in

Semiparametric model selection for identification of environmental covariates related to adult groundfish catches and weights

  • 1.

    Francis, R. C., Hare, S. R., Hollowed, A. B. & Wooster, W. S. Effects of interdecadal climate variability on the oceanic ecosystems of the NE Pacific. Fish. Oceanogr. 7, 1–21. https://doi.org/10.1046/j.1365-2419.1998.00052.x (1998).

    Article 

    Google Scholar 

  • 2.

    Hollowed, A. B. & Wooster, W. S. Variability of winter ocean conditions and strong year classes of Northeast Pacific groundfish. ICES Mar. Sci. Symp. 195, 433–444 (1992).

    Google Scholar 

  • 3.

    Mantua, N. J. & Hare, S. R. The Pacific decadal oscillation. J. Oceanogr. 58, 35–44. https://doi.org/10.1023/A:1015820616384 (2002).

    Article 

    Google Scholar 

  • 4.

    Di Lorenzo, E. et al. North Pacific gyre oscillation links ocean climate and ecosystem change. Geophys. Res. Lett.https://doi.org/10.1029/2007GL032838 (2008).

    Article 

    Google Scholar 

  • 5.

    Di Lorenzo, E. et al. Synthesis of pacific ocean climate and ecosystem dynamics. Oceanography 26, 68–81. https://doi.org/10.5670/oceanog.2013.76 (2013).

    Article 

    Google Scholar 

  • 6.

    Anderson, P. J. & Piatt, J. F. Community reorganization in the Gulf of Alaska following ocean climate regime shift. Mar. Ecol. Prog. Ser. 189, 117–123 (1999).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Polovina, J. J., Mitchum, G. T. & Evans, G. T. Decadal and basin-scale variation in mixed layer depth and the impact on biological production in the Central and North Pacific, 1960–88. Deep Sea Res. Part I Oceanogr. Res. Pap. 42, 1701–1716 (1995).

  • 8.

    Litzow, M. A. & Mueter, F. J. Assessing the ecological importance of climate regime shifts: an approach from the North Pacific Ocean. Prog. Oceanogr. 120, 110–119. https://doi.org/10.1016/j.pocean.2013.08.003 (2014).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Möllmann, C., Folke, C., Edwards, M. & Conversi, A. Marine regime shifts around the globe: theory, drivers and impacts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130260. https://doi.org/10.1098/rstb.2013.0260 (2015).

  • 10.

    Litzow, M. A., Mueter, F. J. & Hobday, A. J. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability. Glob. Change Biol. 20, 38–50. https://doi.org/10.1111/gcb.12373 (2014).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Goen, J., & Erikson, L. Fishery Statistics. Technical Report. IPHC-2018-AM094-05, International Pacific Halibut Commission (2017).

  • 12.

    Johnson, K. F. et al. Status of the U.S. Sablefish Resource in 2015. Technical Report. Pacific Fishery Management Council (2016).

  • 13.

    Pacific Fishery Management Council. Pacific Coast Groundfish Fishery Management Plan. Technical Report, NOAA (2016).

  • 14.

    NPFMC. Fishery Management Plan for Groundfish of the Gulf of Alaska. Technical Report, North Pacific Fishery Management Council (2017).

  • 15.

    Pennoyer, S. & Balsiger, J. Groundfish Total Allowable Catch Specifications and Prohibited Species Catch Limits Under the Authority of the Fishery Management Plans for the Groundfish Fishery of the Bering Sea and Aleutian Islands Area and Groundfish of the Gulf of Alaska: Final Supplemental Environmental Impact Statement. Technical Report, United States National Marine Fisheries Service Alaska Regional Office, Juneau, Alaska (1998).

  • 16.

    Rodgveller, C. J., Lunsford, C. R. & Fujioka, J. T. Evidence of hook competition in longline surveys. Fish. Bull. 106, 364–374 (2008).

    Google Scholar 

  • 17.

    Hutchings, J. A. Collapse and recovery of marine fishes. Nature 406, 882–885. https://doi.org/10.1038/35022565 (2000).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Moore, J. A. Deep-sea finfish fisheries: lessons from history. Fisheries 24, 16–21 (1999).

    Article 

    Google Scholar 

  • 19.

    Moore, J. & Mace, P. Challenges and prospects for deep-sea finfish fisheries. Fisheries 24, 22–23 (1999).

    Article 

    Google Scholar 

  • 20.

    Rijnsdorp, A. D., Peck, M. A., Engelhard, G. H., Möllmann, C. & Pinnegar, J. K. Resolving the effect of climate change on fish populations. ICES J. Mar. Sci. J. Conseil 66, 1570–1583. https://doi.org/10.1093/icesjms/fsp056 (2009).

    Article 

    Google Scholar 

  • 21.

    Xia, Y. & Li, W. K. On single-index coefficient regression models. J. Am. Stat. Assoc. 94, 1275–1285. https://doi.org/10.1080/01621459.1999.10473880 (1999).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 22.

    Kammann, E. E. & Wand, M. P. Geoadditive models. J. R. Stat. Soc. Ser. C (Appl. Stat.) 52, 1–18. https://doi.org/10.1111/1467-9876.00385 (2003).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 23.

    Lu, Z., Steinskog, D. J., Tjøstheim, D. & Yao, Q. Adaptively varying-coefficient spatiotemporal models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 71, 859–880. https://doi.org/10.1111/j.1467-9868.2009.00710.x (2009).

  • 24.

    Ruppert, D., Wand, M. P. & Carroll, R. J. Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, 2003).

  • 25.

    Scheipl, F., Staicu, A.-M. & Greven, S. Functional additive mixed models. J. Comput. Graph. Stat. 24, 477–501. https://doi.org/10.1080/10618600.2014.901914 (2015).

    MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 

  • 26.

    Wood, S. N. Generalized Additive Models. Texts in Statistical Science Series (Chapman & Hall/CRC, 2006). An Introduction with (R).

  • 27.

    Wood, S. N., Scheipl, F. & Faraway, J. J. Straightforward intermediate rank tensor product smoothing in mixed models. Stat. Comput. 23, 341–360. https://doi.org/10.1007/s11222-012-9314-z (2013).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 28.

    Conn, P. B., Johnson, D. S. & Boveng, P. L. On extrapolating past the range of observed data when making statistical predictions in ecology. PLoS ONE 10, 1–16. https://doi.org/10.1371/journal.pone.0141416 (2015).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Hodges, J. S. & Reich, B. J. Adding spatially-correlated errors can mess up the fixed effect you love. Am. Stat. 64, 325–334. https://doi.org/10.1198/tast.2010.10052 (2010).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 30.

    Kim, M. & Wang, L. Generalized spatially varying coefficient models. J. Comput. Graph. Stat.https://doi.org/10.1080/10618600.2020.1754225 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Mu, J., Wang, G. & Wang, L. Estimation and inference in spatially varying coefficient models. Environmetrics 29, e2485. https://doi.org/10.1002/env.2485 (2018).

    MathSciNet 
    Article 

    Google Scholar 

  • 32.

    Brumback, B. A. & Rice, J. A. Smoothing spline models for the analysis of nested and crossed samples of curves. J. Am. Stat. Assoc. 93, 961–976. https://doi.org/10.1080/01621459.1998.10473755 (1998).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 33.

    Augustin, N. H., Trenkel, V. M., Wood, S. N. & Lorance, P. Space-time modelling of blue ling for fisheries stock management. Environmetrics 24, 109–119. https://doi.org/10.1002/env.2196 (2013).

    MathSciNet 
    Article 

    Google Scholar 

  • 34.

    Finley, A. O. Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence. Methods Ecol. Evol. 2, 143–154. https://doi.org/10.1111/j.2041-210X.2010.00060.x (2011).

    Article 

    Google Scholar 

  • 35.

    Al-Sulami, D., Jiang, Z., Lu, Z. & Zhu, J. Estimation for semiparametric nonlinear regression of irregularly located spatial time-series data. Econom. Stat. 2, 22–35. https://doi.org/10.1016/j.ecosta.2017.01.002 (2017).

    MathSciNet 
    Article 

    Google Scholar 

  • 36.

    Gelfand, A. E., Kim, H.-J., Sirmans, C. F. & Banerjee, S. Spatial modeling with spatially varying coefficient processes. J. Am. Stat. Assoc. 98, 387–396. https://doi.org/10.1198/016214503000170 (2003).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 37.

    Feng, S. & Xue, L. Model detection and estimation for single-index varying coefficient model. J. Multivariate Anal. 139, 227–244. https://doi.org/10.1016/j.jmva.2015.03.008 (2015).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 38.

    Zhao, P. & Xue, L. Variable selection for semiparametric varying coefficient partially linear models. Stat. Probab. Lett. 79, 2148–2157 (2009).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 39.

    Guisan, A. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model. 157, 89–100. https://doi.org/10.1016/S0304-3800(02)00204-1 (2002).

    Article 

    Google Scholar 

  • 40.

    Zhang, L. & Gove, J. H. Spatial assessment of model errors from four regression techniques. For. Sci. 51, 334–346. https://doi.org/10.1093/forestscience/51.4.334 (2005).

    Article 

    Google Scholar 

  • 41.

    Cai, A., Tsay, R. S. & Chen, R. Variable selection in linear regression with many predictors. J. Comput. Graph. Stat. 18, 573–591 (2009).

    MathSciNet 
    Article 

    Google Scholar 

  • 42.

    Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 58, 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x (1996).

  • 43.

    Ledolter, J. Penalty-Based Variable Selection in Regression Models with Many Parameters (LASSO), chap. 6, 71–82 (Wiley, 2013). https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118596289.ch6.

  • 44.

    Yuan, M. & Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 68, 49–67. https://doi.org/10.1111/j.1467-9868.2005.00532.x (2006).

  • 45.

    Fan, J., Yao, Q. & Cai, Z. Adaptive varying-coefficient linear models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 65, 57–80 (2003).

  • 46.

    Matsui, H. & Misumi, T. Variable selection for varying-coefficient models with the sparse regularization. Comput. Stat. 30, 43–55 (2015).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 47.

    Wang, H. & Xia, Y. Shrinkage estimation of the varying coefficient model. J. Am. Stat. Assoc. 104, 747–757. https://doi.org/10.1198/jasa.2009.0138 (2009).

    MathSciNet 
    CAS 
    Article 
    MATH 

    Google Scholar 

  • 48.

    Xue, L. & Qu, A. Variable selection in high-dimensional varying-coefficient models with global optimality. J. Mach. Learn. Res. 13, 1973–1998 (2012).

    MathSciNet 
    MATH 

    Google Scholar 

  • 49.

    Feng, S. & Xue, L. Variable selection for single-index varying-coefficient model. Front. Math. China 8, 541–565. https://doi.org/10.1007/s11464-013-0284-z (2013).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 50.

    Song, Y., Jian, L. & Lin, L. Robust exponential squared loss-based variable selection for high-dimensional single-index varying-coefficient model. J. Comput. Appl. Math. 308, 330–345. https://doi.org/10.1016/j.cam.2016.05.030 (2016).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 51.

    Yang, J. & Yang, H. Robust modal estimation and variable selection for single-index varying-coefficient models. Commun. Stat. Simul. Comput 46, 2976–2997. https://doi.org/10.1080/03610918.2015.1069346 (2017).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 52.

    Wei, F., Huang, J. & Li, H. Variable selection and estimation in high-dimensional varying-coefficient models. Stat. Sin. 21, 1515–1540. https://doi.org/10.5705/ss.2009.316 (2011).

    MathSciNet 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • 53.

    Sun, W., Bindele, H. F., Abebe, A. & Correia, H. E. Robust functional coefficient selection for the single-index varying coefficients regression model. J. Stat. Comput. Simul. 1, 17. https://doi.org/10.1080/00949655.2020.1867548 (2021).

    Article 

    Google Scholar 

  • 54.

    Alaska Fisheries Science Center. AFSC/ABL: Longline Sablefish Survey. https://noaa-fisheries-afsc.data.socrata.com/dataset/AFSC-ABL-Longline-Sablefish-Survey/itxd-qjvg/data (2019). Accessed 14 Apr 2014.

  • 55.

    Sigler, M. F. & Lunsford, C. R. Survey Protocol for the Alaska Sablefish Longline Survey. Technical Report, Alaska Fisheries Science Center (2009).

  • 56.

    National Data Buoy Center. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys. https://accession.nodc.noaa.gov/NDBC-CMANWx (2018).

  • 57.

    Alaska Fisheries Science Center. AFSC/RACE/GAP: RACEBASE Database. Online: http://www.afsc.noaa.gov/RACE/groundfish/survey_data/default.htm (2019).

  • 58.

    O’Brien, T. D. COPEPOD: The Global Plankton Database. A Review of the 2007 Database Contents and New Quality Control Methodology. Technical Report. NOAA Tech. Memo. NMFS-F/ST-34, U.S. Dep. Commerce (2007).

  • 59.

    Boyer, T. P. et al. World Ocean Database 2013. Technical Report. National Oceanographic Data Center, Ocean Climate Laboratory, NOAA (2013). https://doi.org/10.7289/V5NZ85MT.

  • 60.

    Neter, J., Kutner, M. H., Nachtsheim, C. J. & Wasserman, W. Applied Linear Statistical Models, vol. 4 (Irwin Chicago, 1996).

  • 61.

    O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).

    Article 

    Google Scholar 

  • 62.

    Li, L., Losser, T., Yorke, C. & Piltner, R. Fast inverse distance weighting-based spatiotemporal interpolation: a web-based application of interpolating daily fine particulate matter pm2.5 in the contiguous U.S. using parallel programming and k–d tree. Int. J. Environ. Res. Public Health 11, 9101–9141. https://doi.org/10.3390/ijerph110909101 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Melo, C. & Melo, O. geosptdb: Spatio-Temporal Inverse Distance Weighting and Radial Basis Functions with Distance-Based Regression (2015). R package version 0.5-0.

  • 64.

    Whitney, F. A. Nutrient variability in the mixed layer of the subarctic Pacific Ocean, 1987–2010. J. Oceanogr. 67, 481–492. https://doi.org/10.1007/s10872-011-0051-2 (2011).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Whitney, F. A., Bograd, S. J. & Ono, T. Nutrient enrichment of the subarctic Pacific Ocean pycnocline. Geophys. Res. Lett. 40, 2200–2205. https://doi.org/10.1002/grl.50439 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 66.

    Brodeur, R. D. & Ware, D. M. Long-term variability in zooplankton biomass in the subarctic Pacific Ocean. Fish. Oceanogr. 1, 32–38. https://doi.org/10.1111/j.1365-2419.1992.tb00023.x (1992).

    Article 

    Google Scholar 

  • 67.

    Chiba, S., Tadokoro, K., Sugisaki, H. & Saino, T. Effects of decadal climate change on zooplankton over the last 50 years in the western subarctic North Pacific. Glob. Change Biol. 12, 907–920. https://doi.org/10.1111/j.1365-2486.2006.01136.x (2006).

    ADS 
    Article 

    Google Scholar 

  • 68.

    Childers, A. R., Whitledge, T. E. & Stockwell, D. A. Seasonal and interannual variability in the distribution of nutrients and chlorophyll a across the Gulf of Alaska shelf: 1998–2000. Deep Sea Res. Part II Top. Stud. Oceanogr. 52, 193–216. https://doi.org/10.1016/j.dsr2.2004.09.018 (2005). U.S. GLOBEC Biological and Physical Studies of Plankton, Fish and Higher Trophic Level Production, Distribution, and Variability in the Northeast Pacific.

  • 69.

    Sackmann, B., Mack, L., Logsdon, M. & Perry, M. J. Seasonal and inter-annual variability of SeaWiFS-derived chlorophyll a concentrations in waters off the Washington and Vancouver Island coasts, 1998–2002. Deep Sea Res. Part II Top. Stud. Oceanogr. 51, 945–965 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 70.

    Wong, C. et al. Seasonal cycles of nutrients and dissolved inorganic carbon at high and mid latitudes in the North Pacific Ocean during the Skaugran cruises: determination of new production and nutrient uptake ratios. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 5317–5338 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 71.

    Houde, E. D. chap. Recruitment variability. In Fish Reproductive Biology: Implications for Assessment and Management (Eds. Jakobsen, T., Fogarty, M. J., Megrey, B. A. & Moksness, E.) (Wiley, 2016).

  • 72.

    Mason, J. C., Beamish, R. J. & McFarlane, G. A. Sexual maturity, fecundity, spawning, and early life history of sablefish (Anoplopoma fimbria) off the Pacific Coast of Canada. Can. J. Fish. Aquat. Sci. 40, 2126–2134. https://doi.org/10.1139/f83-247 (1983).

    Article 

    Google Scholar 

  • 73.

    Stark, J. W. Geographic and seasonal variations in maturation and growth of female Pacific cod (Gadus macrocephalus) in the Gulf of Alaska and Bering Sea. Fish. Bull. 105, 396–407 (2007).

    Google Scholar 

  • 74.

    Clark, W. G., Hare, S. R., Parma, A. M., Sullivan, P. J. & Trumble, R. J. Decadal changes in growth and recruitment of Pacific halibut (Hippoglossus stenolepis). Can. J. Fish. Aquat. Sci. 56, 242–252. https://doi.org/10.1139/f98-163 (1999).

    Article 

    Google Scholar 

  • 75.

    Echeverria, T. W. Thirty-four species of California rockfishes: maturity and seasonality of reproduction. Fish. Bull. 85, 229–250 (1987).

    Google Scholar 

  • 76.

    Di Lorenzo, E. North Pacific Gyre Oscillation (2018). NPGO index.

  • 77.

    NOAA ESRL Physical Sciences Division. Multivariate ENSO Index Version 2 (MEI.v2) (2019). ENSO index.

  • 78.

    Mantua, N. J. & JISAU, University of Washington. The Pacific Decadal Oscillation. http://research.jisao.washington.edu/pdo/ (2016).

  • 79.

    Di Lorenzo, E. et al. Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat. Geosc. 3, 762–765. https://doi.org/10.1038/ngeo984 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 80.

    Ladd, C. & Stabeno, P. J. Stratification on the Eastern Bering Sea shelf revisited. Deep Sea Res. Part II Top. Stud. Oceanogr. 65-70, 72–83. https://doi.org/10.1016/j.dsr2.2012.02.009 (2012). Understanding Ecosystem Processes in the Eastern Bering Sea.

  • 81.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).

  • 82.

    Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl. Acad. Sci. 114, 12202–12207, https://doi.org/10.1073/pnas.1706080114 (2017).

  • 83.

    Hewitt, J. E., Ellis, J. I. & Thrush, S. F. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Change Biol. 22, 2665–2675. https://doi.org/10.1111/gcb.13176 (2016).

    ADS 
    Article 

    Google Scholar 

  • 84.

    Liu, H. et al. Nonlinear dynamic features and co-predictability of the Georges Bank fish community. Mar. Ecol. Prog. Ser. 464, 195–207 (2012).

    ADS 
    Article 

    Google Scholar 

  • 85.

    Echave, K., Rodgveller, C. & Shotwell, S. K. Calculation of the Geographic Area Sizes Used to Create Population Indices for the Alaska Fisheries Science Center Longline Survey. Technical Report. NOAA Tech. Memo. NMFS-AFSC-253, U.S. Department of Commerce (2013).

  • 86.

    Webster, R. A., Soderlund, E., Dykstra, C. L. & Stewart, I. J. Monitoring change in a dynamic environment: spatio-temporal modelling of calibrated data from different types of fisheries surveys of Pacific halibut. Can. J. Fish. Aquat. Sci.https://doi.org/10.1139/cjfas-2019-0240 (2020).

    Article 

    Google Scholar 

  • 87.

    Spencer, P. D., Hollowed, A. B., Sigler, M. F., Hermann, A. J. & Nelson, M. W. Trait-based climate vulnerability assessments in data-rich systems: an application to eastern Bering Sea fish and invertebrate stocks. Glob. Change Biol. 25, 3954–3971. https://doi.org/10.1111/gcb.14763 (2019).

    ADS 
    Article 

    Google Scholar 

  • 88.

    Sogard, S. M. & Olla, B. L. Growth and behavioral responses to elevated temperatures by juvenile sablefish Anoplopoma fimbria and the interactive role of food availability. Mar. Ecol. Prog. Ser. 217, 121–134 (2001).

    ADS 
    Article 

    Google Scholar 

  • 89.

    Stoner, A. W. & Sturm, E. A. Temperature and hunger mediate sablefish (Anoplopoma fimbria) feeding motivation: implications for stock assessment. Can. J. Fish. Aquat. Sci. 61, 238–246. https://doi.org/10.1139/f03-170 (2004).

    Article 

    Google Scholar 

  • 90.

    Sogard, S. Interannual variability in growth rates of early juvenile sablefish and the role of environmental factors. Bull. Mar. Sci.https://doi.org/10.5343/bms.2010.1045 (2011).

    Article 

    Google Scholar 

  • 91.

    Shotwell, S. K., Hanselman, D. H. & Belkin, I. M. Toward biophysical synergy: investigating advection along the Polar Front to identify factors influencing Alaska sablefish recruitment. Deep Sea Res. Part II Top. Stud. Oceanogr. 107, 40–53. https://doi.org/10.1016/j.dsr2.2012.08.024 (2014). Fronts, Fish and Top Predators.

  • 92.

    Tolimieri, N., Haltuch, M. A., Lee, Q., Jacox, M. G. & Bograd, S. J. Oceanographic drivers of sablefish recruitment in the California current. Fish. Oceanogr. 27, 458–474. https://doi.org/10.1111/fog.12266 (2018).

    Article 

    Google Scholar 

  • 93.

    Harrison, P. J., Whitney, F. A., Tsuda, A., Saito, H. & Tadokoro, K. Nutrient and plankton dynamics in the NE and NW gyres of the subarctic Pacific Ocean. J. Oceanogr. 60, 93–117 (2004).

    CAS 
    Article 

    Google Scholar 

  • 94.

    Coffin, B. & Mueter, F. Environmental covariates of sablefish (Anoplopoma fimbria) and Pacific ocean perch (Sebastes alutus) recruitment in the Gulf of Alaska. Deep Sea Res. Part II Top. Stud. Oceanogr. 132, 194–209. https://doi.org/10.1016/j.dsr2.2015.02.016 (2016). Understanding Ecosystem Processes in the Gulf of Alaska: Volume 1.

  • 95.

    Hagen, P. T. & Quinn, T. J. Long-term growth dynamics of young Pacific halibut: evidence of temperature-induced variation. Fish. Res. 11, 283–306. https://doi.org/10.1016/0165-7836(91)90006-2 (1991). Fish Population Dynamics: Solving Fishery Management Problems.

  • 96.

    Hurst, T. P., Spencer, M. L., Sogard, S. M. & Stoner, A. W. Compensatory growth, energy storage and behavior of juvenile Pacific halibut Hippoglossus stenolepis following thermally induced growth reduction. Mar. Ecol. Prog. Ser. 293, 233–240 (2005).

    ADS 
    Article 

    Google Scholar 

  • 97.

    Holsman, K. K., Aydin, K., Sullivan, J., Hurst, T. & Kruse, G. H. Climate effects and bottom-up controls on growth and size-at-age of Pacific halibut (Hippoglossus stenolepis) in Alaska (USA). Fish. Oceanogr. 28, 345–358. https://doi.org/10.1111/fog.12416 (2019).

    Article 

    Google Scholar 

  • 98.

    Lynam, C. P. et al. Interaction between top-down and bottom-up control in marine food webs. Proc. Natl. Acad. Sci. 114, 1952–1957. https://doi.org/10.1073/pnas.1621037114 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 99.

    Desmit, X., Ruddick, K. & Lacroix, G. Salinity predicts the distribution of chlorophyll a spring peak in the southern North Sea continental waters. J. Sea Res. 103, 59–74. https://doi.org/10.1016/j.seares.2015.02.007 (2015).

    ADS 
    Article 

    Google Scholar 

  • 100.

    Benson, A. J. & Trites, A. W. Ecological effects of regime shifts in the Bering Sea and eastern North Pacific Ocean. Fish Fish. 3, 95–113. https://doi.org/10.1046/j.1467-2979.2002.00078.x (2002).

    Article 

    Google Scholar 

  • 101.

    Feng, J. et al. Contrasting correlation patterns between environmental factors and chlorophyll levels in the global ocean. Glob. Biogeochem. Cycles 29, 2095–2107. https://doi.org/10.1002/2015GB005216 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 102.

    Kahru, M. et al. Global correlations between winds and ocean chlorophyll. J. Geophys. Res. Oceanshttps://doi.org/10.1029/2010JC006500 (2010).

    Article 

    Google Scholar 

  • 103.

    Sadorus, L. L., Mantua, N. J., Essington, T., Hickey, B. & Hare, S. Distribution patterns of Pacific halibut (Hippoglossus stenolepis) in relation to environmental variables along the continental shelf waters of the US West Coast and southern British Columbia. Fish. Oceanogr. 23, 225–241. https://doi.org/10.1111/fog.12057 (2014).

    Article 

    Google Scholar 

  • 104.

    Barbeaux, S. et al. Gulf of Alaska Stock Assessments. Technical Report, North Pacific Fishery Management Council, Anchorage, AK (2018).

  • 105.

    Barbeaux, S. J. & Hollowed, A. B. Ontogeny matters: climate variability and effects on fish distribution in the eastern Bering Sea. Fish. Oceanogr. 27, 1–15. https://doi.org/10.1111/fog.12229 (2018).

    Article 

    Google Scholar 

  • 106.

    Yang, Q. et al. How “The Blob” affected groundfish distributions in the Gulf of Alaska. Fish. Oceanogr. 28, 434–453. https://doi.org/10.1111/fog.12422 (2019).

  • 107.

    Hagens, M. & Middelburg, J. J. Attributing seasonal pH variability in surface ocean waters to governing factors. Geophys. Res. Lett. 43, 12528–12537. https://doi.org/10.1002/2016GL071719 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 108.

    Fry, C. H., Tyrrell, T., Hain, M. P., Bates, N. R. & Achterberg, E. P. Analysis of global surface ocean alkalinity to determine controlling processes. Mar. Chem. 174, 46–57 (2015).

    CAS 
    Article 

    Google Scholar 

  • 109.

    Bromhead, D. et al. The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares). Deep Sea Res. Part II Top. Stud. Oceanogr. 113, 268–279, https://doi.org/10.1016/j.dsr2.2014.03.019 (2015). Impacts of climate on marine top predators.

  • 110.

    Doney, S. C. et al. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proc. Natl. Acad. Sci. 104, 14580–14585. https://doi.org/10.1073/pnas.0702218104 (2007).

  • 111.

    Napp, J. M. & Hunt, G. L. Anomalous conditions in the south-eastern Bering Sea 1997: linkages among climate, weather, ocean, and biology. Fish. Oceanogr. 10, 61–68. https://doi.org/10.1046/j.1365-2419.2001.00155.x (2001).

    Article 

    Google Scholar 

  • 112.

    Noakes, D. J. & Beamish, R. J. Synchrony of marine fish catches and climate and ocean regime shifts in the North Pacific Ocean. Mar. Coast. Fish. 1, 155–168. https://doi.org/10.1577/C08-001.1 (2009).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Analytics platform for coastal desalination plants wins 2021 Water Innovation Prize

    Supplementation of Lactobacillus early in life alters attention bias to threat in piglets