in

Severe vegetation degradation associated with different disturbance types in a poorly managed urban recreation destination in Iran

  • 1.

    Tourism and visitor management in protected areas: guidelines for sustainability. (IUCN, International Union for Conservation of Nature, 2018). https://doi.org/10.2305/IUCN.CH.2018.PAG.27.en.

  • 2.

    Pickering, C. M., Hill, W., Newsome, D. & Leung, Y.-F. Comparing hiking, mountain biking and horse riding impacts on vegetation and soils in Australia and the United States of America. J. Environ. Manag. 91, 551–562 (2010).

    Article 

    Google Scholar 

  • 3.

    Huddart, D. & Stott, T. Outdoor Recreation Environmental Impacts and Management (Springer International Publishing, 2019) https://doi.org/10.1007/978-3-319-97758-4.

    Book 

    Google Scholar 

  • 4.

    Marion, J. L., Leung, Y.-F., Eagleston, H. & Burroughs, K. A review and synthesis of recreation ecology research findings on visitor impacts to wilderness and protected natural areas. J. Forest. 114, 352–362 (2016).

    Article 

    Google Scholar 

  • 5.

    Monz, C. A. et al. Assessment and monitoring of recreation impacts and resource conditions on mountain summits: Examples from the Northern Forest, USA. Mt. Res. Dev. 30, 332–343 (2010).

    Article 

    Google Scholar 

  • 6.

    Salesa, D. & Cerdà, A. Soil erosion on mountain trails as a consequence of recreational activities. A comprehensive review of the scientific literature. J. Environ. Manag. 271, 110990 (2020).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Barros, A., Aschero, V., Mazzolari, A., Cavieres, L. A. & Pickering, C. M. Going off trails: How dispersed visitor use affects alpine vegetation. J. Environ. Manag. 267, 110546 (2020).

    Article 

    Google Scholar 

  • 8.

    Cole, D. N. & Monz, C. A. Impacts of camping on vegetation: Response and recovery following acute and chronic disturbance. Environ. Manag. 32, 693–705 (2003).

    Article 

    Google Scholar 

  • 9.

    Andrés-Abellán, M. et al. Impacts of visitors on soil and vegetation of the recreational area ‘Nacimiento del Río Mundo’ (Castilla-La Mancha, Spain). Environ. Monit. Assess. 101, 55–67 (2005).

    PubMed 

    Google Scholar 

  • 10.

    Lathrop, E. W. The effect of vehicle use on desert vegetation. In Environmental Effects of Off-Road Vehicles (eds Webb, R. H. & Wilshire, H. G.) 153–166 (Springer New York, 1983) https://doi.org/10.1007/978-1-4612-5454-6_8.

    Chapter 

    Google Scholar 

  • 11.

    Abd El-Wahab, R. H., Al-Rashed, A. R. & Al-Dousari, A. Influences of physiographic factors, vegetation patterns and human impacts on aeolian landforms in arid environment. Arid Ecosyst. 8, 97–110 (2018).

    Article 

    Google Scholar 

  • 12.

    Abdullah, M. M., Feagin, R. A., Musawi, L., Whisenant, S. & Popescu, S. The use of remote sensing to develop a site history for restoration planning in an arid landscape: Developing site history using remote sensing. Restor. Ecol. 24, 91–99 (2016).

    Article 

    Google Scholar 

  • 13.

    Kariuki, S., Gallery, R. E., Sparks, J. P., Gimblett, R. & McClaran, M. P. Soil microbial activity is resistant to recreational camping disturbance in a Prosopis dominated semiarid savanna. Appl. Soil Ecol. 147, 103424 (2020).

    Article 

    Google Scholar 

  • 14.

    Ballantyne, M. & Pickering, C. M. The impacts of trail infrastructure on vegetation and soils: Current literature and future directions. J. Environ. Manag. 164, 53–64 (2015).

    Article 

    Google Scholar 

  • 15.

    Marion, J. L. & Cole, D. N. Spatial and temporal variation in soil and vegetation impacts on campsites. Ecol. Appl. 6, 520–530 (1996).

    Article 

    Google Scholar 

  • 16.

    Favretto, N., Luedeling, E., Stringer, L. C. & Dougill, A. J. Valuing ecosystem services in semi-arid rangelands through stochastic simulation. Land Degrad. Dev. 28, 65–73 (2017).

    Article 

    Google Scholar 

  • 17.

    MalekiSadabadi, Z., Ejtehadi, H., Abrishamchi, P., Vaezi, J. & Erfanian Taleii Noghan, M. B. Comparative study of autecological, morphological, anatomical and karyological characteristics of Acanthophyllum ejtehadii Mahmoudi & Vaezi (Caryophyllaceae): A rare endemic in Iran. Taiwania 62, 321–330 (2017).

    Google Scholar 

  • 18.

    Noroozi, J. et al. Endemic diversity and distribution of the Iranian vascular flora across phytogeographical regions, biodiversity hotspots and areas of endemism. Sci. Rep. 9, 12991 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Erfanian, M. B., Ejtehadi, H., Vaezi, J. & Moazzeni, H. Plant community responses to multiple disturbances in an arid region of northeast Iran. Land Degrad. Dev. 30, 1554–1563 (2019).

    Article 

    Google Scholar 

  • 20.

    Erfanian, M. B., Sagharyan, M., Memariani, F. & Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 11, 9159 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Memariani, F. Khorassan-Kopet Dagh Mountains. In Plant biogeography and vegetation of high mountains of central and south-west Asia (ed. Noroozi, J.) (Springer, 2020).

    Google Scholar 

  • 22.

    Noroozi, J. et al. Hotspots within a global biodiversity hotspot—areas of endemism are associated with high mountain ranges. Sci. Rep. 8, 10345 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 23.

    Manafzadeh, S., Staedler, Y. M. & Conti, E. Visions of the past and dreams of the future in the Orient: The Irano-Turanian region from classical botany to evolutionary studies. Biol. Rev. 92, 1365–1388 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 24.

    Erfanian, M. B. et al. Plant community responses to environmentally friendly piste management in northeast Iran. Ecol. Evol. 9, 8193–8200 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    District 9 of Mashhad municipality. Introducing the Khorshid Park. District 9 of Mashhad municipality https://zone9.mashhad.ir/media_gallery/6505295 (2020).

  • 26.

    Djamali, M. et al. Application of the global bioclimatic classification to Iran: Implications for understanding the modern vegetation and biogeography. Ecol. Mediterr. 37, 91–114 (2011).

    Article 

    Google Scholar 

  • 27.

    Hamedian, M. Investigation of Plant Biodiversity in Najafi Mountains, Mashhad, Khorassan Razavi Province (Ferdowsi University of Mashhad, 2015).

    Google Scholar 

  • 28.

    Kent, M. Vegetation Description and Data Analysis (Wiley, 2012).

    Google Scholar 

  • 29.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

    MATH 
    Book 

    Google Scholar 

  • 30.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).

  • 31.

    de Mendiburu, F. agricolae: Statistical Procedures for Agricultural Research (2020).

  • 32.

    Legendre, P. & Legendre, L. F. J. Numerical Ecology (Elsevier, 2012).

    MATH 

    Google Scholar 

  • 33.

    Oksanen, J. et al. vegan: Community Ecology Package. (2019).

  • 34.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article 

    Google Scholar 

  • 35.

    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar 

  • 37.

    Jin, Y. & Qian, H. V. PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography https://doi.org/10.1111/ecog.04434 (2019).

    Article 

    Google Scholar 

  • 38.

    Barber, N. A. et al. Grassland restoration characteristics influence phylogenetic and taxonomic structure of plant communities and suggest assembly mechanisms. J. Ecol. 107, 2105–2120 (2019).

    Article 

    Google Scholar 

  • 39.

    Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324 (2014).

    Article 

    Google Scholar 

  • 40.

    Chao, A., Chiu, C.-H. & Jost, L. Phylogenetic diversity measures based on Hill numbers. Philos. Trans. R. Soc. B Biol. Sci. 365, 3599–3609 (2010).

    Article 

    Google Scholar 

  • 41.

    Chao, A. et al. Rarefaction and extrapolation of phylogenetic diversity. Methods Ecol. Evol. 6, 380–388 (2015).

    Article 

    Google Scholar 

  • 42.

    Barros, A. & Marina Pickering, C. How networks of informal trails cause landscape level damage to vegetation. Environ. Manag. 60, 57–68 (2017).

    Article 

    Google Scholar 

  • 43.

    Kissling, M., Hegetschweiler, K. T., Rusterholz, H.-P. & Baur, B. Short-term and long-term effects of human trampling on above-ground vegetation, soil density, soil organic matter and soil microbial processes in suburban beech forests. Appl. Soil. Ecol. 42, 303–314 (2009).

    Article 

    Google Scholar 

  • 44.

    Mingyu, Y., Hens, L., Xiaokun, O. & Wulf, R. D. Impacts of recreational trampling on sub-alpine vegetation and soils in Northwest Yunnan, China. Acta Ecol. Sin. 29, 171–175 (2009).

    Article 

    Google Scholar 

  • 45.

    Pickering, C. M. & Growcock, A. J. Impacts of experimental trampling on tall alpine herbfields and subalpine grasslands in the Australian Alps. J. Environ. Manag. 91, 532–540 (2009).

    Article 

    Google Scholar 

  • 46.

    Roovers, P., Verheyen, K., Hermy, M. & Gulinck, H. Experimental trampling and vegetation recovery in some forest and heathland communities. Appl. Veg. Sci. 7, 111–118 (2004).

    Article 

    Google Scholar 

  • 47.

    Jägerbrand, A. K. & Alatalo, J. M. Effects of human trampling on abundance and diversity of vascular plants, bryophytes and lichens in alpine heath vegetation, Northern Sweden. Springerplus 4, 95 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Ballantyne, M. & Pickering, C. M. Recreational trails as a source of negative impacts on the persistence of keystone species and facilitation. J. Environ. Manag. 159, 48–57 (2015).

    Article 

    Google Scholar 

  • 49.

    Hill, W. & Pickering, C. M. Vegetation associated with different walking track types in the Kosciuszko alpine area, Australia. J. Environ. Manag. 78, 24–34 (2006).

    Article 

    Google Scholar 

  • 50.

    Wilkerson, E. & Whitman, A. Recreation trails in Maine and New Hampshire: A comparison of notorized, non-motorized, and non-mechanized trails. In Proceedings of the 2009 Northeastern Recreation Research Symposium, Vol. 1, 214–222 (U.S. Department of Agriculture, 2010).

  • 51.

    Karim, M. N. & Mallik, A. U. Roadside revegetation by native plants. Ecol. Eng. 32, 222–237 (2008).

    Article 

    Google Scholar 

  • 52.

    Lembrechts, J. J., Milbau, A. & Nijs, I. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem. PLoS ONE 9, e89664 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Lembrechts, J. J. et al. Mountain roads shift native and non-native plant species’ ranges. Ecography 40, 353–364 (2017).

    Article 

    Google Scholar 

  • 54.

    Farrell, T. A. & Marion, J. L. The protected area visitor impact management (PAVIM) framework: A simplified process for making management decisions. J. Sustain. Tour. 10, 31–51 (2002).

    Article 

    Google Scholar 

  • 55.

    Jim, C. Y. Camping impacts on vegetation and soil in a Hong Kong country park. Appl. Geogr. 7, 317–332 (1987).

    Article 

    Google Scholar 

  • 56.

    Nylund, M., Haapanen, A., Kellomäki, S. & Nylund, L. Deterioration of forest ground vegetation and decrease of radial growth of trees on camping sites. Silva Fenn. 13, 343–356 (1979).

    Article 

    Google Scholar 

  • 57.

    Lembrechts, J. J. et al. Disturbance is the key to plant invasions in cold environments. Proc. Natl. Acad. Sci. 113, 14061–14066 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    For campus “porosity hunters,” climate resilience is the goal

    New “risk triage” platform pinpoints compounding threats to US infrastructure