in

Sex, age, and parental harmonic convergence behavior affect the immune performance of Aedes aegypti offspring

[adace-ad id="91168"]
  • 1.

    Centers for Disease Control and Prevention https://www.cdc.gov/dengue/areaswithrisk/index.html (2021).

  • 2.

    Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Centers for Disease Control and Prevention https://www.cdc.gov/parasites/malaria/index.html (2021)

  • 5.

    Gatton, M. L. et al. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution 67, 1218–1230 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Sokhna, C., Ndiath, M. O. & Rogier, C. The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clin. Microbiol. Infect. 19, 902–907 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Hemingway, J., Hawkes, N. J., McCarroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–665 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Alphey, L. et al. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 10, 295–311 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Oliva, C. F., Damiens, D. & Benedict, M. Q. Male reproductive biology of Aedes mosquitoes. Acta Tropica 132, S12–S19 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Benelli, G. Research in mosquito control: current challenges for a brighter future. Parasitol. Res. 114, 2801–2805 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Lees, R. S., Gilles, J. R. L., Hendrichs, J., Vreysen, M. J. B. & Bourtzis, K. Back to the future: the sterile insect technique against mosquito disease vectors. Curr. Opin. Insect Sci. 10, 156–162 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Wilke, A. B. & Marrelli, M. T. Genetic control of mosquitoes: population suppression strategies. Rev. Inst. Med. Trop. Sao Paulo 54, 287–292 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Alphey, L., Nimmo, D., O’Connell, S. & Alphey, N. Insect population suppression using engineered insects. Adv. Exp. Med. Biol. 627, 93–103 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Carvalho, D. O. et al. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl. Trop. Dis. 9, e0003864 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Wilke, A. B. B. & Marrelli, M. T. Paratransgenesis: a promising new strategy for mosquito vector control. Parasit. Vectors 8, 342 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Hegde, S. & Hughes, G. L. Population modification of Anopheles mosquitoes for malaria control: pathways to implementation. Pathog. Glob. Health 111, 401–402 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Carballar-Lejarazu, R. & James, A. A. Population modification of Anopheline species to control malaria transmission. Pathog. Glob. Health 111, 424–35. (2017).

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Li, Y. & Liu, X. A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population. J. Theor. Biol. 448, 53–65 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Farkas, J. Z., Gourley, S. A., Liu, R. & Yakubu, A. A. Modelling Wolbachia infection in a sex-structured mosquito population carrying West Nile virus. J. Math. Biol. 75, 621–47. (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Zhang, X., Tang, S., Liu, Q., Cheke, R. A. & Zhu, H. Models to assess the effects of non-identical sex ratio augmentations of Wolbachia-carrying mosquitoes on the control of dengue disease. Math. Biosci. 299, 58–72 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Almeida, L., Privat, Y., Strugarek, M. & Vauchelet, N. Optimal releases for population replacement strategies, application to Wolbachia. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics 51, 3170–3194 (2019).

    Article 

    Google Scholar 

  • 22.

    Clements, A. N. The Biology of Mosquitoes: Sensory Reception and Behaviour (Chapman & Hall, 1999).

  • 23.

    Downes, J. A. The swarming and mating flight of Diptera. Annu. Rev. Entomol. 14, 271–98. (1969).

    Article 

    Google Scholar 

  • 24.

    Yuval, B. Mating systems of blood-feeding flies. Annu Rev. Entomol. 51, 413–440 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Charlwood, J. D. & Jones, M. D. R. Mating in the mosquito, Anopheles gambiae s.l. Physiol. Entomol. 5, 315–20. (1980).

    Article 

    Google Scholar 

  • 26.

    Pitts, R. J., Mozuraitis, R., Gauvin-Bialecki, A. & Lemperiere, G. The roles of kairomones, synomones and pheromones in the chemically-mediated behaviour of male mosquitoes. Acta Tropica 132, S26–S34 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Hartberg, W. K. Observations on the mating behaviour of Aedes aegypti in nature. Bull. World Health Organ. 45, 847–850 (1971).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Sawadogo P. S. et al. Swarming behaviour in natural populations of Anopheles gambiae and An. coluzzii: review of 4 years survey in rural areas of sympatry, Burkina Faso (West Africa). Acta Tropica 132, S42-52 https://doi.org/10.1016/j.actatropica.2013.12.011 (2014).

  • 29.

    South, A. C. F. Progress in Mosquito Research (Elsevier Science, 2016).

  • 30.

    Cator, L. J. & Harrington, L. C. The harmonic convergence of fathers predicts the mating success of sons in Aedes aegypti. Anim. Behav. 82, 627–633 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Benelli, G. The best time to have sex: mating behaviour and effect of daylight time on male sexual competitiveness in the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae). Parasitol. Res. 114, 887–94. (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Benelli, G., Romano, D., Messing, R. H. & Canale, A. First report of behavioural lateralisation in mosquitoes: right-biased kicking behaviour against males in females of the Asian tiger mosquito, Aedes albopictus. Parasitol. Res. 114, 1613–1617 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Cator, L. J. & Zanti, Z. Size, sounds and sex: interactions between body size and harmonic convergence signals determine mating success in Aedes aegypti. Parasites Vectors 9, 622 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    South, S. H., Steiner, D. & Arnqvist, G. Male mating costs in a polygynous mosquito with ornaments expressed in both sexes. Proc. R. Soc. B 276, 3671–3678 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Roth, L. M. A study of mosquito behavior. An experimental laboratory study of the sexual behavior of Aedes aegypti (Linnaeus). Am. Midl. Nat. 40, 265–352 (1948).

    Article 

    Google Scholar 

  • 36.

    Wishart, G., van Sickle, G. R. & Riordan, D. F. Orientation of the males of Aedes aegypti (L.) (Diptera: Culicidae) to sound. Can. Entomol. 94, 613–26. (1962).

    Article 

    Google Scholar 

  • 37.

    Belton, P. Attraction of male mosquitoes to sound. J. Am. Mosq. Control Assoc. 10, 297–301 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Simões, P. M. V., Ingham, R. A., Gibson, G. & Russell, I. J. A role for acoustic distortion in novel rapid frequency modulation behaviour in free-flying male mosquitoes. J. Exp. Biol. 219, 2039–2047 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Simoes, P. M., Gibson, G. & Russell, I. J. Pre-copula acoustic behaviour of males in the malarial mosquitoes Anopheles coluzzii and Anopheles gambiae s.s. does not contribute to reproductive isolation. J. Exp. Biol. 220, 379–85. (2017).

    PubMed 
    Article 

    Google Scholar 

  • 40.

    Gibson, G. & Russell, I. Flying in tune: sexual recognition in mosquitoes. Curr. Biol. 16, 1311–1316 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Cator, L. J., Arthur, B. J., Harrington, L. C. & Hoy, R. R. Harmonic convergence in the love songs of the dengue vector mosquito. Science 323, 1077–1079 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Warren, B., Gibson, G. & Russell, I. J. Sex recognition through midflight mating duets in culex mosquitoes is mediated by acoustic distortion. Curr. Biol. 19, 485–491 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. “Singing on the Wing” as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr. Biol. 20, 131–136 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Aldersley, A. & Cator, L. J. Female resistance and harmonic convergence influence male mating success in Aedes aegypti. Sci. Rep. 9, 2145 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 45.

    League, G. P., Baxter, L. L., Wolfner, M. F. & Harrington, L. C. Male accessory gland molecules inhibit harmonic convergence in the mosquito Aedes aegypti. Curr. Biol. 29, R196–r7. (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Villarreal, S. M. et al. Male contributions during mating increase female survival in the disease vector mosquito Aedes aegypti. J. Insect Physiol. 108, 1–9 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Dobson, A. P. & Hudson, P. J. Regulation and stability of a free-living host–parasite system: Trichostrongylus tenuis in Red Grouse. II. Population models. J. Anim. Ecol. 61, 487–498 (1992).

    Article 

    Google Scholar 

  • 48.

    Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: a role for parasites? Science 218, 384–387 (1982).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Hillyer, J. F., Schmidt, S. L. & Christensen, B. M. Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria. Cell Tissue Res. 313, 117–127 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Moreno-García, M., Córdoba-Aguilar, A., Condé, R. & Lanz-Mendoza, H. Current immunity markers in insect ecological immunology: assumed trade-offs and methodological issues. Bull. Entomol. Res. 103, 127–139 (2012).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 51.

    Schoenle, L. A., Downs, C. J. & Martin L. B. An introduction to ecoimmunology. In Advances in Comparative Immunology (ed. Cooper, E. L.). 901–932 (Springer International Publishing, 2018).

  • 52.

    Barthel, A., Staudacher, H., Schmaltz, A., Heckel, D. G. & Groot, A. T. Sex-specific consequences of an induced immune response on reproduction in a moth. BMC Evol. Biol. 15, 282 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Hillyer, J. F. & Strand, M. R. Mosquito hemocyte-mediated immune responses. Curr. Opin. Insect Sci. 3, 14–21 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Chun, J., Riehle, M. & Paskewitz, S. M. Effect of mosquito age and reproductive status on melanization of sephadex beads in Plasmodium-refractory and -susceptible strains of Anopheles gambiae. J. Invertebr. Pathol. 66, 11–17 (1995).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Li, J., Tracy, J. W. & Christensen, B. M. Relationship of hemolymph phenol oxidase and mosquito age in Aedes aegypti. J. Invertebr. Pathol. 60, 188–191 (1992).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Rolff, J. & Siva-Jothy, M. T. Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc. Natl Acad. Sci. USA 99, 9916–9918 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Schwenke, R. A. & Lazzaro, B. P. Juvenile hormone suppresses resistance to infection in mated female Drosophila melanogaster. Curr. Biol. 27, 596–601 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Reavey, C. E., Warnock, N. D., Cotter, S. C. & Vogel, H. Trade-offs between personal immunity and reproduction in the burying beetle, Nicrophorus vespilloides. Behav. Ecol. 25, 415–23. (2014).

    Article 

    Google Scholar 

  • 59.

    Christensen, B. M., Li, J. Y., Chen, C. C. & Nappi, A. J. Melanization immune responses in mosquito vectors. Trends Parasitol. 21, 192–199 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Harris, K. L., Christensen, B. M. & Miranpuri, G. S. Comparative studies on the melanization response of male and female mosquitoes against microfilariae. Dev. Comp. Immunol. 10, 305–310 (1986).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Syed, Z. A., Gupta, V., Arun, M. G., Dhiman, A., Nandy, B. & Prasad, N. G. Absence of reproduction-immunity trade-off in male Drosophila melanogaster evolving under differential sexual selection. BMC Evol. Biol. 20, 13 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Schwenke R. A., Lazzaro B. P., Wolfner M. F. Reproduction-immunity trade-offs in insects. Annu. Rev. Entomol. 61, 239–256 (2016).

  • 63.

    Schmid-Hempel, P. Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 50, 529–551 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Armitage, S. A., Thompson, J. J., Rolff, J. & Siva-Jothy, M. T. Examining costs of induced and constitutive immune investment in Tenebrio molitor. J. Evol. Biol. 16, 1038–1044 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Schwartz, A. & Koella, J. C. The cost of immunity in the yellow fever mosquito, Aedes aegypti depends on immune activation. J. Evol. Biol. 17, 834–840 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Rauw, W. M. Immune response from a resource allocation perspective. Front. Genet. 3, 267 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 67.

    Levashina, E. A., Moita, L. F., Blandin, S., Vriend, G., Lagueux, M. & Kafatos, F. C. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104, 709–718 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Strand, M. R. The insect cellular immune response. Insect Sci. 15, 1–14 (2008).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Das, S., Dong, Y., Garver, L. & Dimopoulos, G. Specificity of the Innate Immune System: a Closer Look at the Mosquito Pattern-recognition Receptor Repertoire. (Oxford University Press, 2009).

    Google Scholar 

  • 70.

    King, J. G. & Hillyer, J. F. Infection-induced interaction between the mosquito circulatory and immune systems. PLoS Pathog. 8, e1003058–e1003058 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Murdock, C. C., Paaijmans, K. P., Bell, A. S., King, J. G., Hillyer, J. F. & Read, A. F. et al. Complex effects of temperature on mosquito immune function. Proc. R. Soc. B 279, 3357–3366 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 72.

    Liu, W.-T., Tu, W.-C., Lin, C.-H., Yang, U.-C. & Chen, C.-C. Involvement of cecropin B in the formation of the Aedes aegypti mosquito cuticle. Sci. Rep. 7, 16395 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 73.

    Hillyer, J. F., Schmidt, S. L., Fuchs, J. F., Boyle, J. P. & Christensen, B. M. Age-associated mortality in immune challenged mosquitoes (Aedes aegypti) correlates with a decrease in haemocyte numbers. Cell. Microbiol. 7, 39–51 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Coggins, S., Estévez-Lao, T. & Hillyer, J. Increased survivorship following bacterial infection by the mosquito Aedes aegypti as compared to Anopheles gambiae correlates with increased transcriptional induction of antimicrobial peptides. Dev. Comp. Immunol. 37, 390–401 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Luckhart, S., Vodovotz, Y., Cui, L. & Rosenberg, R. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc. Natl Acad. Sci. USA 95, 5700–5705 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Graça-Souza, A. V., Maya-Monteiro, C., Paiva-Silva, G. O., Braz, G. R., Paes, M. C. & Sorgine, M. H. et al. Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochem. Mol. Biol. 36, 322–335 (2006).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 77.

    Cirimotich, C. M., Ramirez, J. L. & Dimopoulos G. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe 10, 307–310 (2011).

  • 78.

    Sánchez-Vargas, I., Scott, J. C., Poole-Smith, B. K., Franz, A. W., Barbosa-Solomieu, V. & Wilusz, J. et al. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog. 5, e1000299 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 79.

    Souza-Neto, J. A., Sim, S. & Dimopoulos, G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc. Natl Acad. Sci. 106, 17841–17846 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Castillo, J., Brown, M. R. & Strand, M. R. Blood feeding and insulin-like peptide 3 stimulate proliferation of hemocytes in the mosquito Aedes aegypti. PLoS Pathog. 7, e1002274 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Bryant, W. B. & Michel, K. Blood feeding induces hemocyte proliferation and activation in the African malaria mosquito, Anopheles gambiae Giles. J. Exp. Biol. 217, 1238–1245 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Xi, Z., Ramirez, J. L. & Dimopoulos, G. The Aedes aegypti Toll pathway controls dengue virus infection. PLoS Pathog. 4, e1000098 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 83.

    Bottino-Rojas, V., Talyuli, O. A., Jupatanakul, N., Sim, S., Dimopoulos, G. & Venancio, T. M. et al. Heme signaling impacts global gene expression, immunity and dengue virus infectivity in Aedes aegypti. PLoS ONE 10, e0135985 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 84.

    Oliveira, J. H. M., Talyuli, O. A. C., Goncalves, R. L. S., Paiva-Silva, G. O., Sorgine, M. H. F. & Alvarenga, P. H. et al. Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika. PLoS Negl. Trop. Dis. 11, e0005525 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 85.

    Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 86.

    Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837–2848 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Rand, T. A., Ginalski, K., Grishin, N. V. & Wang, X. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc. Natl Acad. Sci. USA 101, 14385–14389 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 90.

    Ramos-Castaneda, J., Gonzalez, C., Jimenez, M. A., Duran, J., Hernandez-Martinez, S. & Rodriguez, M. H. et al. Effect of nitric oxide on dengue virus replication in Aedes aegypti and Anopheles albimanus. Intervirology 51, 335–341 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 91.

    Xiao, X., Liu, Y., Zhang, X., Wang, J., Li, Z. & Pang, X. et al. Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides. PLoS Pathog. 10, e1004027 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 92.

    Waldock, J., Olson, K. E. & Christophides, G. K. Anopheles gambiae antiviral immune response to systemic O’nyong-nyong infection. PLoS Negl. Trop. Dis. 6, e1565 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 93.

    Colpitts, T. M., Cox, J., Vanlandingham, D. L., Feitosa, F. M., Cheng, G. & Kurscheid, S. et al. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever Viruses. PLoS Pathog. 7, e1002189 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 94.

    Moon, A. E., Walker A. J. & Goodbourn S. Regulation of transcription of the Aedes albopictus cecropin A1 gene: a role for p38 mitogen-activated protein kinase. Insect Biochem. Mol. Biol. 41, 628–636 (2011).

  • 95.

    Jordan, T. X. & Randall, G. Dengue virus activates the AMP kinase-mTOR axis to stimulate a proviral lipophagy. J. Virol. 91, e02020–16 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Urbanowski, M. D. & Hobman, T. C. The West Nile virus capsid protein blocks apoptosis through a phosphatidylinositol 3-kinase-dependent mechanism. J. Virol. 87, 872–881 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Lazzaro, B. P., Flores, H. A., Lorigan, J. G. & Yourth, C. P. Genotype-by-environment interactions and adaptation to local temperature affect immunity and fecundity in Drosophila melanogaster. PLoS Pathog. 4, e1000025 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 98.

    Jupatanakul, N. et al. Engineered Aedes aegypti JAK/STAT pathway-mediated immunity to dengue virus. PLoS Negl. Trop. Dis. 11, e0005187 (2017).

  • 99.

    Martin-Acebes M. A. et al. The composition of West Nile virus lipid envelope unveils a role of sphingolipid metabolism in flavivirus biogenesis. J. Virol. 88, 12041–12054 (2014).

  • 100.

    Barletta, A. B., Alves, L. R., Silva, M. C., Sim, S., Dimopoulos, G. & Liechocki, S. et al. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and dengue virus. Sci. Rep. 6, 19928 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 101.

    Fu, Q., Inankur, B., Yin, J., Striker, R. & Lan, Q. Sterol carrier protein 2, a critical host factor for dengue virus infection, alters the cholesterol distribution in mosquito Aag2 Cells. J. Med. Entomol. 52, 1124–1134 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 102.

    Jupatanakul, N., Sim, S. & Dimopoulos, G. Aedes aegypti ML and Niemann-Pick type C family members are agonists of dengue virus infection. Dev. Comp. Immunol. 43, 1–9 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 103.

    Evans, M. V. et al. Carry-over effects of urban larval environments on the transmission potential of dengue-2 virus. Parasites Vectors 11, 426 (2018).

  • 104.

    Salazar, M. I., Richardson, J. H., Sánchez-Vargas, I., Olson, K. E. & Beaty, B. J. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. 7, 9 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 105.

    Gloria-Soria, A., Soghigian, J., Kellner, D. & Powell, J. R. Genetic diversity of laboratory strains and implications for research: the case of Aedes aegypti. PLoS Negl. Trop. Dis. 13, e0007930 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 106.

    Souza-Neto, J. A., Powell, J. R. & Bonizzoni, M. Aedes aegypti vector competence studies: a review. Infect. Genet. Evol. 67, 191–209 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 107.

    Franz, A. W. et al. Fitness impact and stability of a transgene conferring resistance to dengue-2 virus following introgression into a genetically diverse Aedes aegypti strain. PLoS Negl. Trop. Dis. 8, e2833 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 108.

    Irvin, N., Hoddle, M. S., O’Brochta, D. A., Carey, B. & Atkinson, P. W. Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. Proc. Natl Acad. Sci. USA 101, 891–896 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 109.

    Pompon, J. & Levashina, E. A. A new role of the mosquito complement-like cascade in male fertility in Anopheles gambiae. PLoS Biol. 13, e1002255–e1002255 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 110.

    Mitchell, S. N., Kakani, E. G., South, A., Howell, P. I., Waterhouse, R. M. & Catteruccia, F. Mosquito biology. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes. Science 347, 985–988 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 111.

    League G. P. et al. Sexual selection theory meets disease vector control: Testing harmonic convergence as a “good genes” signal in Aedes aegypti mosquitoes. Preprint at bioRxiv https://doi.org/10.1101/2020.10.29.360651 (2020).

  • 112.

    Hillyer, J. F. & Estevez-Lao, T. Y. Nitric oxide is an essential component of the hemocyte-mediated mosquito immune response against bacteria. Dev. Comp. Immunol. 34, 141–149 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 113.

    Warburg, A., Shtern, A., Cohen, N. & Dahan, N. Laminin and a Plasmodium ookinete surface protein inhibit melanotic encapsulation of Sephadex beads in the hemocoel of mosquitoes. Microbes Infect. 9, 192–199 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 114.

    Lambrechts, L., Vulule, J. M. & Koella, J. C. Genetic correlation between melanization and antibacterial immune responses in a natural population of the malaria vector Anopheles gambiae. Evolution 58, 2377–2381 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 115.

    Lambrechts, L., Morlais, I., Awono-Ambene, P. H., Cohuet, A., Simard, F. & Jacques, J.-C. et al. Effect of infection by Plasmodium falciparum on the melanization immune response of Anopheles gambiae. Am. J. Tropic. Med. Hyg. 76, 475–480 (2007).

    Article 

    Google Scholar 

  • 116.

    Boëte, C., Paul, R. E. L. & Koella, J. C. Direct and indirect immunosuppression by a malaria parasite in its mosquito vector. Proc. R. Soc. Lond. Ser. B 271, 1611–1615 (2004).

    Article 

    Google Scholar 

  • 117.

    Ramakrishnan, M. A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 5, 85–86 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 118.

    Tesla, B., Demakovsky, L. R., Mordecai, E. A., Ryan, S. J., Bonds, M. H. & Ngonghala, C. N. et al. Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proc. R. Soc. B 285, 20180795 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 119.

    Franz, A. W., Kantor, A. M., Passarelli, A. L. & Clem, R. J. Tissue barriers to arbovirus infection in mosquitoes. Viruses 7, 3741–3767 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 120.

    Lanciotti, R. S., Calisher, C. H., Gubler, D. J., Chang, G. J. & Vorndam, A. V. Rapid detection and typing of dengue viruses from clinical-samples by using reverse transcriptase-polymerase chain-reaction. J. Clin. Microbiol 30, 545–551 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 121.

    RStudio Team. RStudio: Integrated Development Environment for R (RStudio, Inc., 2016).

  • 122.

    R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  • 123.

    Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W. & Nielsen, A. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • 124.

    Christensen, R. H. B. Ordinal-Regression Models for Ordinal Data. R package version 2015.6-28 (R Foundation for Statistical Computing, 2015).

  • 125.

    Bates, D., Mächler, M., Bolker, B. & Walker S. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 48 (2015).

    Article 

    Google Scholar 

  • 126.

    Bolker, B. R Development Core Team. bbmle: Tools for General Maximum Likelihood Estimation. R package version 1.0.20 (CRAN, 2017).

  • 127.

    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.4 ed (CRAN, 2019).

  • 128.

    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.3, ed (CRAN, 2019).


  • Source: Ecology - nature.com

    Southward decrease in the protection of persistent giant kelp forests in the northeast Pacific

    Integrating spatial analysis and questionnaire survey to better understand human-onager conflict in Southern Iran