in

Shared patterns in body size declines among crinoids during the Palaeozoic extinction events

[adace-ad id="91168"]
  • 1.

    Smith, F. A. et al. Body size evolution across the Geozoic. Annu. Rev. Earth. Planet. Sci. 44, 523–553 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Sallan, L. & Galimberti, A. K. Body-size reduction in vertebrates following the end-Devonian mass extinction. Science 350, 812–815 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Heim, N. A., Knope, M. L., Schaal, E. K., Wang, S. C. & Payne, J. L. Cope’srule in the evolution of marine animals. Science 347, 867–870 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Kammer, T. W. & Ausich, W. I. The, “Age of Crinoids”: A Mississippian biodiversity spike coincident with wide spread carbonate ramps. Palaios 21, 238–248 (2006).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Wright, D. F. Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids. Sci. Rep. 7, 13745 (2017).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Segessenman, D. C. & Kammer, T. W. Testing reduced evolutionary rates during the Late Palaeozoic Ice Age using the crinoid fossil record. Lethaia 51, 330–343 (2018).

    Article 

    Google Scholar 

  • 7.

    Cole, S. R. & Hopkins, M. J. Selectivity and the effect of mass extinctions on disparity and functional ecology. Sci. Adv. 7, eabf4072 (2021).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Baumiller, T. K. Echinoderms Through Time (Echinoderms Dijon) (eds. David, B., Guille, A., Féral, J. P. & Roux, M.) 193–198 (Balkema, 1994).

  • 9.

    Foote, M. Ecological controls on the evolutionary recovery of post-Paleozoic crinoids. Science 274, 1492–1495 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Sallan, L. C., Kammer, T. W., Ausich, W. I. & Cook, L. A. Persistent predator-prey dynamics revealed by mass extinction. Proc. Natl. Acad. Sci. U.S.A. 108, 8335–8338 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Ausich, W. I. & Kammer, T. W. Mississippian crinoid biodiversity, biogeography and macroevolution. Palaeontology 56, 727–740 (2013).

    Article 

    Google Scholar 

  • 12.

    Brom, K. R., Salamon, M. A. & Gorzelak, P. Body-size increase in crinoids following the end-Devonian mass extinction. Sci. Rep. 8, 9606 (2018).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Borths, M. R. & Ausich, W. I. Ordovician-Silurian Lilliput crinoids during the end-Ordovician biotic crisis. Swiss J. Palaeontol. 130, 7–18 (2011).

    Article 

    Google Scholar 

  • 14.

    Payne, J. L., Jost, A. B., Wang, S. C. & Skotheim, J. M. A shift in the long-term mode of foraminiferan size evolution caused by the end-Permian mass extinction. Evolution 67, 816–827 (2013).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Finnegan, S., Heim, N. A., Peters, S. E. & Fischer, W. W. Climate change and the selective signature of the Late Ordovician mass extinction. Proc. Natl. Acad. Sci. U.S.A. 109, 6829–6834 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Peters, S. E. & Ausich, W. I. A sampling-adjusted macroevolutionary history for Ordovician-Early Silurian crinoids. Paleobiology 43, 104–116 (2008).

    Article 

    Google Scholar 

  • 17.

    Ausich, W. I. & Deline, B. Macroevolutionary transition in crinoids following the Late Ordovician extinction event (Ordovician–Early Silurian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 361, 38–48 (2012).

    Article 

    Google Scholar 

  • 18.

    Huttenlocker, A. K. Body size reductions in non mammalian eutheriodont therapsids (synapsida) during the end-permian mass extinction. PLoS ONE 9, e87553 (2014).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Urbanek, A. Biotic crises in the history of upper Silurian graptoloids: A palaeobiological model. Hist. Biol. 7, 29–50 (1993).

    Article 

    Google Scholar 

  • 20.

    Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Stigall, A. L. Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction”. GSA Today 22, 4–9 (2012).

    Article 

    Google Scholar 

  • 22.

    Hone, D. W. E., Keesey, T. M., Pisani, D. & Purvis, A. Macroevolutionary trends in the Dinosauria: Cope’srule. J. Evol. Biol. 18, 587–595 (2005).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Hunt, G. & Roy, K. Fittings and comparing models of phyletic evolution: Random walks and beyond. Paleobiology 32, 578–601 (2006).

    Article 

    Google Scholar 

  • 24.

    Hunt, G., Hopkins, M. J. & Lidgard, S. Simple versus complex models of trait evolution and stasis as are sponse to environmental change. Proc. Natl. Acad. Sci. U.S.A. 112, 4885–4890 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Syverson, V. J. & Baumiller, T. K. Temporal trends of predation resistance in Paleozoic crinoid arm branching morphologies. Paleobiology 40, 417–427 (2014).

    Article 

    Google Scholar 

  • 26.

    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change. 1, 401–406 (2011).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Ebert, T. A. Negative growth and longevity in the purple sea urchin Strongylocentrotus purpuratus (Stimpson). Science 157, 557–558 (1967).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Sato, K. N. et al. Response of sea urchin fitness traits to environmental gradients across the southern California oxygen minimum zone. Front. Mar. Sci. 5, 258 (2018).

    Article 

    Google Scholar 

  • 29.

    Brom, K. R. Bodysize trends of cyrtocrinids (Crinoidea, Cyrtocrinida). Ann. Paleontol. 105, 109–118 (2019).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Webster, G. D. & Webster, D. W. Bibliography and Index of Paleozoic Crinoids, Coronates, and Hemistreptocrinoids. 1758–2012. http://crinoids.azurewebsites.net (2014)

  • 31.

    Hunt, G., & Paleo, T.S. Analyze Paleontological Time Series. R Package Version 0.5.2. http://cran.r-project.org/web/packages/paleoTS/ (2019).

  • 32.

    RStudio Team. RStudio: Integrated Development for R. (RStudio, PBC, 2020). http://www.rstudio.com/.

  • 33.

    Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: A new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J. & Beerling, D. J. CO2 as a primary driver of Phanerozoic climate. GSA Today 14, 4–10 (2004).

    Article 

    Google Scholar 

  • 35.

    Veizer, J. & Prokoph, A. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth. Sci. Rev. 146, 92–104 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. Linear and Nonlinear MixedEffectsModels. R Package Version 3.1-143. http://cran.r-project.org/package=nlme (2019).

  • 37.

    Sookias, R. B., Benson, R. B. & Butler, R. J. Biology, not environment, drives major patterns in maximum tetrapod body size through time. Biol. Lett. 8, 674–677 (2012).

    Article 

    Google Scholar 

  • 38.

    Rego, B. L., Wang, S. C., Altiner, D. & Payne, J. L. Within- and among-genus components of size evolution during mass extinction, recovery, and background intervals: A case study of Late Permian through Late Triassic foraminifera. Paleobiology 38, 627–643 (2012).

    Article 

    Google Scholar 

  • 39.

    Zhang, Z., Augustin, M. & Payne, J. L. Phanerozoic trends in brachiopod bodysize from synoptic data. Paleobiology 41, 491–501 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Extending the natural adaptive capacity of coral holobionts

    A microfluidic platform for highly parallel bite by bite profiling of mosquito-borne pathogen transmission