in

Shifts in ecological strategy spectra of typical forest vegetation types across four climatic zones

  • 1.

    Schimper, A. F. W., Fisher, W. R., Groom, P. & Balfour, I. B. Plant-Geography Upon a Physiological Basis. Rev. and ed. edn (Clarendon Press, 1903).

  • 2.

    Grime, J. & Pierce, S. The Evolutionary Strategies that Shape Ecosystems (Wiley-Blackwell, 2012).

    Book 

    Google Scholar 

  • 3.

    McGill, B., Enquist, B., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Chapin Iii, F. S., Bret-Harte, M., Hobbie, S. & Zhong, H. Plant functional types as predictors of transient responses of arctic vegetation to global change. J. Veg. Sci. 7, 347 (1996).

    Article 

    Google Scholar 

  • 5.

    Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (Wiley, 2001).

    Google Scholar 

  • 6.

    Lavorel, S. & Garnier, E. Aardvarck to Zyzyxia-functional groups across kingdoms. New Phytol. 149, 360–363 (2001).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Guo, W. et al. The role of adaptive strategies in plant naturalization. Ecol. Lett. 21, 1380–1389 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. & Cerabolini, B. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. J. Ecol. 95, 698–706 (2007).

    Article 

    Google Scholar 

  • 9.

    Pinho, B., Tabarelli, M., Engelbrecht, B., Sfair, J. & Melo, F. Plant functional assembly is mediated by rainfall and soil conditions in a seasonally dry tropical forest. Basic Appl. Ecol. (2019).

  • 10.

    Wang, J. et al. Plant community ecological strategy assembly response to yak grazing in an alpine meadow on the eastern Tibetan Plateau. Land Degrad. Dev. 29, 2920–2931 (2018).

    Article 

    Google Scholar 

  • 11.

    Barba-Escoto, L., Ponce-Mendoza, A., García-Romero, A. & Calvillo-Medina, R. P. Plant community strategies responses to recent eruptions of Popocatépetl volcano, Mexico. J. Veg. Sci. 30, 375–385 (2019).

    Article 

    Google Scholar 

  • 12.

    Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).

    Article 

    Google Scholar 

  • 13.

    Kelly, R. et al. Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale. Ecol. Lett. 24, 970 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Reich, P. The world-wide “fast-slow” plant economics spectrum: A traits manifesto. J. Ecol. 102, 275 (2014).

    Article 

    Google Scholar 

  • 16.

    Rosado, B. H. P. & De Mattos, E. A. On the relative importance of CSR ecological strategies and integrative traits to explain species dominance at local scales. Funct. Ecol. 31, 1969 (2017).

    Article 

    Google Scholar 

  • 17.

    Raunkiær, C. The Life Forms of Plants and Statistical Plant Geography (Oxford University Press, 1934).

    Google Scholar 

  • 18.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).

    Google Scholar 

  • 19.

    Grime, J. P. Vegetation classification by reference to strategies. Nature 250, 26–31 (1974).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).

    Article 

    Google Scholar 

  • 21.

    Liao, H. et al. The role of functional strategies in global plant distribution. Ecography n/a (2020).

  • 22.

    Pierce, S. et al. A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Funct. Ecol. 31, 444–457 (2017).

    Article 

    Google Scholar 

  • 23.

    Junker, R., Lechleitner, M., Kuppler, J. & Ohler, L.-M. Interconnectedness of the Grinnellian and Eltonian niche in regional and local plant-pollinator communities. Front. Plant Sci. 10, 1371 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Yu, R., Huang, J., Xu, Y., Ding, Y. & Zang, R. Plant functional niches in forests across four climatic zones: Exploring the periodic table of niches based on plant functional traits. Front. Plant Sci. 11, 841 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Westoby, M., Falster, D., Moles, A., Vesk, P. & Wright, I. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

    Article 

    Google Scholar 

  • 27.

    Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Pierce, S. & Cerabolini, B. Plant economics and size trait spectra are both explained by one theory. (2018).

  • 29.

    Grime, J. P. Plant Strategies and Vegetation Processes (Wiley, 1979).

    Google Scholar 

  • 30.

    Grime, J. P. A comment on Loehle’s critique of the triangular model of primary plant strategies. Ecology 69, 1618–1620 (1988).

    Article 

    Google Scholar 

  • 31.

    Grime, J. et al. Integrated screening validates primary axes of specialisation in plants. Oikos 79, 259–281 (1997).

    Article 

    Google Scholar 

  • 32.

    Hodgson, J. G., Wilson, P. J., Hunt, R., Grime, J. P. & Thompson, K. Allocating C-S-R plant functional types: A soft approach to a hard problem. Oikos 85, 282–294 (1999).

    Article 

    Google Scholar 

  • 33.

    Pierce, S. & Cerabolini, B. E. L. Allocating CSR plant functional types: The use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002–1010 (2013).

    Article 

    Google Scholar 

  • 34.

    Cerabolini, B. E. L. et al. Can CSR classification be generally applied outside Britain?. Plant Ecol. 210, 253–261 (2010).

    Article 

    Google Scholar 

  • 35.

    Shipley, B. & Li, Y. An experimental test of CSR theory using a globally calibrated ordination method. PLoS ONE 12, e0175404 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Rosenfield, M. F., Müller, S. C. & Overbeck, G. E. Short gradient, but distinct plant strategies: The CSR scheme applied to subtropical forests. J. Veg. Sci. 30, 984–993 (2019).

    Article 

    Google Scholar 

  • 37.

    Pyšek, P., Sádlo, J., Mandák, B. & Jarosík, V. Czech alien flora and the historical pattern of its formation: What came first to Central Europe?. Oecologia 135, 122–130 (2003).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Lambdon, P., Lloret, F. & Hulme, P. Do alien plants on Mediterranean islands tend to invade different niches from native species?. Biol. Invasions 10, 703–716 (2008).

    Article 

    Google Scholar 

  • 39.

    Dainese, M. & Bragazza, L. Plant traits across different habitats of the Italian Alps: A comparative analysis between native and alien species. Alpine Bot. 122, 11–21 (2012).

    Article 

    Google Scholar 

  • 40.

    Alexander, J. et al. Plant invasions into mountains and alpine ecosystems: Current status and future challenges. Alpine Bot. 126, 89 (2016).

    Article 

    Google Scholar 

  • 41.

    Condit, R. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots (Springer, 1998).

    Book 

    Google Scholar 

  • 42.

    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).

    Article 

    Google Scholar 

  • 43.

    Cerabolini, B. et al. Why are many anthropogenic agroecosystems particularly species-rich?. Plant Biosyst. 150, 550–557 (2014).

    Article 

    Google Scholar 

  • 44.

    Team, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

    Google Scholar 

  • 45.

    Ferry, N. E. H. A. M. {ggtern}: Ternary diagrams using {ggplot2}. J. Stat Softw. 87, 1–17 (2018).

    Google Scholar 

  • 46.

    Pinheiro, J. B. D., DebRoy, S., Sarkar, D., & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models (2021).

  • 47.

    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots (2020).

  • 48.

    Diaz, S. et al. The plant traits that drive ecosystems: Evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).

    Article 

    Google Scholar 

  • 49.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 50.

    Parkhurst, D. F. & Loucks, O. L. Optimal leaf size in relation to environment. J. Ecol. 60, 505–537 (1972).

    Article 

    Google Scholar 

  • 51.

    Fonseca, C., Overton, J., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 88, 964–977 (2001).

    Article 

    Google Scholar 

  • 52.

    Hodgson, J. et al. Is leaf dry matter content a better predictor of soil fertility than specific leaf area?. Ann. Bot. 108, 1337–1345 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Han, X.-W., Fang, J. Y., Reich, P., Woodward, I. & Wang, Z. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol. Lett. 14, 788–796 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Ordoñez, J. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).

    Article 

    Google Scholar 

  • 55.

    Bernard-Verdier, M. et al. Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J. Ecol. 100, 1422–1433 (2012).

    Article 

    Google Scholar 

  • 56.

    Freschet, G. et al. Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblagesg eb_651 755..765. Glob. Ecol. Biogeogr. 20, 755–765 (2011).

    Article 

    Google Scholar 

  • 57.

    Niinemets, Ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453–469 (2001).

    Article 

    Google Scholar 

  • 58.

    Grime, J. P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Article 

    Google Scholar 

  • 59.

    Ackerly, D. & Cornwell, W. A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecol. Lett. 10, 135–145 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Rijkers, T., Pons, T. L. & Bongers, F. The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance. Funct. Ecol. 14, 77–86 (2000).

    Article 

    Google Scholar 

  • 61.

    de Bello, F. et al. Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. J. Veg. Sci. 20, 475–486 (2009).

    Article 

    Google Scholar 

  • 62.

    Ding, Y., Zang, R., Lu, X. & Huang, J. The impacts of selective logging and clear-cutting on woody plant diversity after 40years of natural recovery in a tropical montane rain forest, south China. Sci. Total Environ. 579, 1683–1691 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Infrared cameras and artificial intelligence provide insight into boiling

    Engineering seeds to resist drought