in

Short-term changes related to autotetraploidy in essential oil composition of Eucalyptus benthamii Maiden & Cambage and its applications in different bioassays

  • 1.

    Ladiges, P. Y., Udovicic, F. & Nelson, G. Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. J. Biogeogr. 30, 989–998 (2003).

    Google Scholar 

  • 2.

    Goodger, J. Q. D., Senaratne, S. L., Nicolle, D. & Di Woodrow, I. E. ff erential metabolic specialization of foliar oil glands in Eucalyptus brevistylis Brooker (Myrtaceae ). Tree Physiol. 00, 1–10 (2018).

    Google Scholar 

  • 3.

    Doran, J. C. & Brophy, J. J. Importance of the tropical red gums. New For. 4, 157–178 (1990).

    Google Scholar 

  • 4.

    Doughty, R. W. The Eucalyptus. A Natural and Commercial History of the Gum Tree. (The John Hopkins University Press, 2000).

  • 5.

    Silva, P. H. M. da, Brito, J. O. & Junior, F. G. da S. Potential of eleven Eucalyptus species for the production of essential oils. Sci. Agric. 63, 85–89 (2006).

  • 6.

    Coppen, J. J. W. Eucalyptus: the genus Eucalyptus. (Taylor & Francis, 2002).

  • 7.

    Barbosa, L. C. A., Filomeno, C. A. & Teixeira, R. R. Chemical variability and biological activities of Eucalyptus spp. Essential oils. Molecules 21, 1–33 (2016).

    Google Scholar 

  • 8.

    Lucia, A., Licastro, S., Zerba, E., Gonzalez, P. & Masuh, H. Bioresource technology sensitivity of Aedes aegypti adults (Diptera : Culicidae ) to the vapors of Eucalyptus essential oils. Bioresour. Technol. 100, 6083–6087 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Batista-Pereira, L. G. et al. Electrophysiological Responses of Atta sexdens rubropilosa workers. Z. Naturforsch. 61c, 749–755 (2006).

    Google Scholar 

  • 10.

    Döll-Boscardin, P. M. et al. In vitro cytotoxic potential of essential oils of Eucalyptus benthamii and its related terpenes on tumor cell lines. Evidence-based Complement. Altern. Med. 2012, 1–8 (2012).

    Google Scholar 

  • 11.

    Lin, H. et al. Production of polyploids from cultured shoot tips of Eucalyptus globulus Labill by treatment with colchicine. Afr. J. Biotechnol. 9, 2252–2255 (2010).

    CAS 

    Google Scholar 

  • 12.

    Silva, A. J., Carvalho, C. R. & Clarindo, W. R. Chromosome set doubling and ploidy stability in synthetic auto- and allotetraploid of Eucalyptus: from in vitro condition to the field. Plant Cell. Tissue Organ Cult. 138, 387–394 (2019).

    Google Scholar 

  • 13.

    Chen, F., Tholl, D., Bohlmann, J. & Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 66, 212–229 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Bhuvaneswari, G., Thirugnanasampandan, R. & Gogulramnath, M. Effect of colchicine induced tetraploidy on morphology, cytology, essential oil composition, gene expression and antioxidant activity of Citrus limon (L.) Osbeck. Physiol. Mol. Biol. Plants 26, 271–279 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Lavania, U. C. et al. Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J. 71, 539–549 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Ramsey, J. & Schemske, D. W. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33, 589–639 (2002).

    Google Scholar 

  • 17.

    Marfil, C. F., Duarte, P. F. & Masuelli, R. W. Phenotypic and epigenetic variation induced in newly synthesized allopolyploids and autopolyploids of potato. Sci. Hortic. (Amsterdam) 234, 101–109 (2018).

    Google Scholar 

  • 18.

    Fernando, S. C., Goodger, J. Q. D., Chew, B. L., Cohen, T. J. & Woodrow, I. E. Induction and characterisation of tetraploidy in Eucalyptus polybractea R.T. Baker. Ind. Crops Prod. 140, 111633 (2019).

    CAS 

    Google Scholar 

  • 19.

    da Silva Souza, T. et al. Polyploidy as a strategy to improve the industrial quality of eucalypt wood. Wood Sci. Technol. 55, 181 (2020).

    Google Scholar 

  • 20.

    Tholl, D. et al. Practical approaches to plant volatile analysis. Plant J. 45, 540–560 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Naidoo, S. et al. Uncovering the defence responses of eucalyptus to pests and pathogens in the genomics age. Tree Physiol. 34, 931–943 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Rasmussen, J. J. et al. Pesticide impacts on predator-prey interactions across two levels of organisation. Aquat. Toxicol. 140–141, 340–345 (2013).

    PubMed 

    Google Scholar 

  • 23.

    Estep, A. S., Sanscrainte, N. D., Waits, C. M., Louton, J. E. & Becnel, J. J. Resistance status and resistance mechanisms in a strain of Aedes aegypti (Diptera: Culicidae) from Puerto Rico. J. Med. Entomol. 54, 1643–1648 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Braga, I. A., Lima, J. B. P., Da Silva Soares, S. & Valle, D. Aedes aegypti resistance to temephos during 2001 in several municipalities in the states of Rio de Janeiro, Sergipe, and Alagoas. Brazil. Mem. Inst. Oswaldo Cruz 99, 199–203 (2004).

    PubMed 

    Google Scholar 

  • 25.

    Mendes, L. A. et al. Larvicidal effect of essential oils from Brazilian cultivars of guava on Aedes aegypti L. Ind. Crops Prod. 108, 684–689 (2017).

    CAS 

    Google Scholar 

  • 26.

    Dutra, Q. P. et al. Phytocytotoxicity of volatile constituents of essential oils from Sparattanthelium Mart. species (Hernandiaceae). Sci. Rep. 10, 12213 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 27.

    Mendes, L. A. et al. Spring alterations in the chromatographic profile of leaf essential oils of improved guava genotypes in Brazil. Sci. Hortic. (Amsterdam) 238, 295–302 (2018).

    CAS 

    Google Scholar 

  • 28.

    Filomeno, C. A. et al. Corymbia spp. and Eucalyptus spp. essential oils have insecticidal activity against Plutella xylostella. Ind. Crop. Prod. 109, 374–383 (2017).

    CAS 

    Google Scholar 

  • 29.

    de Souza, S. et al. Essential oil of Psidium guajava : Influence of genotypes and environment. Sci. Hortic. (Amsterdam) 216, 38–44 (2017).

    Google Scholar 

  • 30.

    Adams, R. P. Identification of Essential Oil Components by Gas Chromatograpy/Mass Spectrometry (Allured Publishing Corporation, 2007).

  • 31.

    Fox, J. et al. Package ‘effects’: Effect displays for linear, generalised linear, and other models. Version 4(2–0), 1–35 (2020).

    Google Scholar 

  • 32.

    R Core Team. R: a language and environment for statistical computing. https://www.r-project.org/ (2020).

  • 33.

    Aragão, F. B. et al. Phytotoxic and cytotoxic effects of eucalyptus essential oil on lettuce (Lactuca sativa L.). Allelopath. J. 35, 259–272 (2015).

    Google Scholar 

  • 34.

    de Assis Alves, T. et al. Toxicity of thymol, carvacrol and their respective phenoxyacetic acids in Lactuca sativa and Sorghum bicolor. Ind. Crops Prod. 114, 59–67 (2018).

  • 35.

    Silva, T. C. R., Abreu, I. S. & Carvalho, C. R. Improved and reproducible flow cytometry methodology for nuclei isolation from single root meristem. J. Bot. 2010, 1–7 (2010).

    Google Scholar 

  • 36.

    Otto, F. DAPI staining of fixed cells for high-resolution flow cytometly of nuclear DNA. Methods Cell Biol. 33, 105–110 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Noori, S. A. S., Norouzi, M., Karimzadeh, G., Shirkool, K. & Niazian, M. Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tissue Organ Cult. 130, 543–551 (2017).

    Google Scholar 

  • 38.

    Iannicelli, J. et al. The “polyploid effect” in the breeding of aromatic and medicinal species. Sci. Hortic. (Amsterdam). 260, 108854 (2020).

  • 39.

    Dhooghe, E., Laere, K. V., Eeckhaut, T., Leus, L. & Huylenbroeck, J. V. Mitotic chromosome doubling of plant tissues in vitro. 104, 359–373 (2011).

    Google Scholar 

  • 40.

    Aharoni, A., Jongsma, M. A. & Bouwmeester, H. J. Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci. 10, 594–602 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Bouvier, F. et al. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. 24, 241–252 (2000).

    CAS 

    Google Scholar 

  • 42.

    Külheim, C. et al. The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus. New Phytol. 191, 1041–1053 (2011).

    PubMed 

    Google Scholar 

  • 43.

    Mossi, A. J. et al. Insecticidal and repellency activity of essential oil of Eucalyptus sp. against Sitophilus zeamais Motschulsky (Coleoptera, Curculionidae). 91, 273–277 (2011).

  • 44.

    Henery, M. L., Moran, G. F., Wallis, I. R., Foley, W. J. & Henery, M. L. Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens. 176, 82–95 (2007).

  • 45.

    Kainer, D., Lanfear, R., Foley, W. J. & Külheim, C. Genomic approaches to selection in outcrossing perennials : focus on essential oil crops. Theor. Appl. Genet. 128, 2351–2365 (2015).

    PubMed 

    Google Scholar 

  • 46.

    Lucia, A., Licastro, S., Zerba, E. & Masuh, H. Yield, chemical composition, and bioactivity of essential oils from 12 species of Eucalyptus on Aedes aegypti larvae. 129, 107–114 (2008).

  • 47.

    Hantao, L. W. et al. Comprehensive two-dimensional gas chromatography combined to multivariate data analysis for detection of disease-resistant clones of Eucalyptus. Talanta 116, 1079–1084 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Batish, D. R., Singh, H. P., Setia, N., Kaur, S. & Kohli, R. K. Chemical composition and phytotoxicity of volatile essential oil from intact and fallen leaves of Eucalyptus citriodora. Z. Naturforsch. – Sect. Biosci. 61, 465–471 (2006).

    CAS 

    Google Scholar 

  • 49.

    Arminante, F. et al. Allelopathic activity of essential oils from mediterranean labiatae. Acta Hort. 723, 347–352 (2006).

    CAS 

    Google Scholar 

  • 50.

    Batish, D. R. et al. Alternative control of littleseed canary grass using eucalypt oil. Agron. Sustain. Dev. 27, 171–177 (2007).

    CAS 

    Google Scholar 

  • 51.

    Vasconcelos, L. C. et al. Phytochemical analysis and effect of the essential oil of Psidium L . species on the initial development and mitotic activity of plants. Env. Sci. Poll. Res. 26, 26216–26228 (2019).

  • 52.

    Prates, H. T., Paes, J. M. V., Pires, N. de M., Filho, I. A. P. & Magalhães, P. C. Efeito do extrato aquoso de leucena na germinação e no desenvolvimento do milho. Pesq. Agropec. Bras. 1, 909–914 (2000).

  • 53.

    Fernandes, T. C. C., Mazzeo, D. E. C. & Marin-morales, M. A. Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to tri-X-uralin herbicide. Pest. Bioch. Phys. 88, 252–259 (2007).

    CAS 

    Google Scholar 

  • 54.

    Andrade, L. F., Davide, L. C. & Gedraite, L. S. The effect of cyanide compounds, fluorides, aluminum, and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa. Ecotoxicol. Environ. Saf. 73, 626–631 (2010).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT in the media: 2021 in review

    Allergenicity to worldwide invasive grass Cortaderia selloana as environmental risk to public health