Orr, J. A. et al. Towards a unified study of multiple stressors: Divisions and common goals across research disciplines. Proc. R. Soc. B 287(1926), 20200421. https://doi.org/10.1098/rspb.2020.0421 (2020).
Google Scholar
de Oliveira Naliato, D. A., Nogueira, M. G. & Perbiche-Neves, G. Discharge pulses of hydroelectric dams and their effects in the downstream limnological conditions: A case study in a large tropical river (SE Brazil). Lakes Reserv. Res. Manag. 14(4), 301–314 (2009).
Google Scholar
Brenden, T. O., Wang, L. & Su, Z. Quantitative identification of disturbance thresholds in support of aquatic resource management. Environ Manage. 42(5), 821–832 (2008).
Google Scholar
Raptis, C. E., van Vliet, M. T. & Pfister, S. Global thermal pollution of rivers from thermoelectric power plants. Environ. Res. Lett. 11, 104011. https://doi.org/10.1088/1748-9326/11/10/104011 (2016).
Google Scholar
Evans, M. S., Warren, G. J. & Page, D. I. The effects of power plant passage on zooplankton mortalities: Eight years of study at the Donald C. Cook Nuclear Plant. Water Res. 20(6), 725–734 (1986).
Google Scholar
Jiang, Z. et al. Tolerance of copepods to short-term thermal stress caused by coastal power stations. J. Therm. Biol. 33(7), 419–423 (2008).
Google Scholar
Dziuba, M. K. et al. Temperature increase altered Daphnia community structure in artificially heated lakes: A potential scenario for a warmer future. Sci. Rep. 10(1), 1–13 (2020).
Google Scholar
Graf, R. & Wrzesiński, D. Detecting patterns of changes in river water temperature in Poland. Water 12(5), 1327 (2020).
Google Scholar
Lee, P. W., Tseng, L. C. & Hwang, J. S. Comparison of mesozooplankton mortality impacted by the cooling systems of two nuclear power plants at the northern Taiwan coast, southern East China Sea. Mar. Pollut. Bull. 136, 114–124 (2018).
Google Scholar
Madden, N., Lewis, A. & Davis, M. Thermal effluent from the power sector: An analysis of once-through cooling system impacts on surface water temperature. Environ. Res. Lett. 8, 035006. https://doi.org/10.1088/1748-9326/8/3/035006 (2013).
Google Scholar
Łabęcka, A. M., Domagala, J. & Pilecka-Rapacz, M. First record of Corbicula fluminalis (OF Muller, 1774) (Bivalvia: corbiculidae)–in Poland. Folia Malacol. 13(1), 25–27 (2005).
Google Scholar
Czerniawski, R., Pilecka-Rapacz, M. & Domagała, J. Zooplankton communities of inter-connected sections of lower River Oder (NW Poland). Open Life Sci. 8(1), 18–29 (2013).
Google Scholar
Yousey, A. E. M. et al. Resurrected ancient Daphnia genotypes show reduced thermal stress tolerance compared to modern descendants. R. Soc. Open Sci. 5, 172193. https://doi.org/10.1098/rsos.172193 (2018).
Google Scholar
Van Urk, G. The effects of a temperature shock on zooplankton. Hydrobiol. Bull. 13(2–3), 101–105 (1979).
Google Scholar
Shelford, V. E. Some concepts of bioecology. Ecology 12(3), 455–467 (1931).
Google Scholar
Halsband-Lenk, C., Hirche, H. J. & Carlotti, F. Temperature impact on reproduction and development of congener copepod populations. J. Exp. Mar. Biol. Ecol. 271(2), 121–153 (2002).
Google Scholar
Hopkin, R. S., Qari, S., Bowler, K., Hyde, D. & Cuculescu, M. Seasonal thermal tolerance in marine Crustacea. J. Exp. Mar. Biol. Ecol. 331(1), 74–81 (2006).
Google Scholar
McCauley, E. M. W. W., Murdoch, W. W. & Nisbet, R. M. Growth, reproduction, and mortality of Daphnia pulex Leydig: Life at low food. Funct. Ecol. 5, 505–514 (1990).
Google Scholar
Lürling, M., Roozen, F., Van Donk, E. & Goser, B. Response of Daphnia to substances released from crowded congeners and conspecifics. J. Plankton Res. 25(8), 967–978 (2003).
Google Scholar
Gliwicz, Z. M., Maszczyk, P. & Uszko, W. Enhanced growth at low population density in Daphnia: The absence of crowding effects or relief from visual predation?. Freshw. Biol. 57(6), 1166–1179 (2012).
Google Scholar
Macarthur, J. W. & Baillie, W. H. T. Metabolic activity and duration of life. J. Exp. Zool. 53(2), 221–242 (1929).
Google Scholar
Kozłowski, J. Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity. Trends Ecol. Evol. 7(1), 15–19 (1992).
Google Scholar
Mitchell, E., Halves, S. J. & Lampert, W. Coexistence of similar genotypes of Daphnia magna in intermittent populations: Response to thermal stress. Oikos 106(3), 469–478 (2004).
Google Scholar
Svetlichny, L., Hubareva, E. & Uttieri, M. Ecophysiological and behavioural responses to salinity and temperature stress in cyclopoid copepod Oithona davisae with comments on gender differences. Mediterr. Mar. Sci. 22(1), 80–101 (2021).
Rahlff, J. et al. Short-term molecular and physiological responses to heat stress in neritic copepods Acartia tonsa and Eurytemora affinis. Comp. Biochem. Physiol. Part A Mol. Integr. 203, 348–358 (2017).
Google Scholar
Bradley, B. P., Hakimzadeh, R. & Vincent, J. S. Rapid responses to stress in Eurytemora affinis. In Biology of Copepods: Developments in Hydrobiology Vol. 47 (eds Boxshall, G. A. & Schminke, H. K.) 197–200 (Springer, 1988).
Google Scholar
Bartholmeé, S., Samchyshyna, L., Santer, B. & Lampert, W. Subitaneous eggs of freshwater copepods pass through fish guts: Survival, hatchability, and potential ecological implications. Limnol. Oceanogr. 50(3), 923–929 (2005).
Google Scholar
Belmonte, G. The suspected contradictory role of parental care in the adaption of planktonic calanoida to temporary freshwater. Water 13(1), 100 (2021).
Google Scholar
Hoffmeyer, M. S., Biancalana, F. & Berasategui, A. Impact of a power plant cooling system on copepod and meroplankton survival (Bahía Blanca estuary, Argentina). Iheringia Ser. Zool. 95(3), 311–318 (2005).
Google Scholar
Williams, P. J., Dick, K. B. & Yampolsky, L. Y. Heat tolerance, temperature acclimation, acute oxidative damage and canalization of haemoglobin expression in Daphnia. Evol. Ecol. 26(3), 591–609 (2012).
Google Scholar
Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322(5902), 690–692 (2008).
Google Scholar
Guzy, R. D. & Schumacker, P. T. Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 91(5), 807–819 (2006).
Google Scholar
Cao, S. S. & Kaufman, R. J. Unfolded protein response. Curr. Biol. 22(16), 622–626 (2012).
Google Scholar
Young, J. C., Moarefi, I. & Hartl, F. U. Hsp90: A specialized but essential protein-folding tool. The J. Cell Biol. 154(2), 267–274 (2001).
Google Scholar
Jolly, C. & Morimoto, R. I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst. 92(19), 1564–1572 (2000).
Google Scholar
Mikulski, A., Bernatowicz, P., Grzesiuk, M., Kloc, M. & Pijanowska, J. Differential levels of stress proteins (HSPs) in male and female Daphnia magna in response to thermal stress: A consequence of sex-related behavioral differences?. J. Chem. Ecol. 37(7), 670–676 (2011).
Google Scholar
Schumpert, C., Handy, I., Dudycha, J. L. & Patel, R. C. Relationship between heat shock protein 70 expression and life span in Daphnia. Mech. Ageing Dev. 139, 1–10 (2014).
Google Scholar
Alekseev, V. R. & Souissi, A. A new species within the Eurytemora affinis complex (Copepoda: Calanoida) from the Atlantic Coast of USA, with observations on eight morphologically different European populations. Zootaxa 2767(1), 41–56 (2011).
Google Scholar
Sługocki, Ł., Rymaszewska, A., & Kirczuk, L. To fit or to belong: Characterization of the non-native invader Eurytemora carolleeae (Copepoda: Calanoida) in the Oder River system (Central Europe). Aquat. Invasions 16(3), 443–460 (2021).
Google Scholar
Müller, M. F., Colomer, J. & Serra, T. Temperature-driven response reversibility and short-term quasi-acclimation of Daphnia magna. PLoS ONE 13(12), e0209705. https://doi.org/10.1371/journal.pone.0209705 (2018).
Google Scholar
Source: Ecology - nature.com