in

Short-term heat shock perturbation affects populations of Daphnia magna and Eurytemora carolleeae: a warning to the water thermal pollution

  • 1.

    Orr, J. A. et al. Towards a unified study of multiple stressors: Divisions and common goals across research disciplines. Proc. R. Soc. B 287(1926), 20200421. https://doi.org/10.1098/rspb.2020.0421 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    de Oliveira Naliato, D. A., Nogueira, M. G. & Perbiche-Neves, G. Discharge pulses of hydroelectric dams and their effects in the downstream limnological conditions: A case study in a large tropical river (SE Brazil). Lakes Reserv. Res. Manag. 14(4), 301–314 (2009).

    Article 
    CAS 

    Google Scholar 

  • 3.

    Brenden, T. O., Wang, L. & Su, Z. Quantitative identification of disturbance thresholds in support of aquatic resource management. Environ Manage. 42(5), 821–832 (2008).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Raptis, C. E., van Vliet, M. T. & Pfister, S. Global thermal pollution of rivers from thermoelectric power plants. Environ. Res. Lett. 11, 104011. https://doi.org/10.1088/1748-9326/11/10/104011 (2016).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Evans, M. S., Warren, G. J. & Page, D. I. The effects of power plant passage on zooplankton mortalities: Eight years of study at the Donald C. Cook Nuclear Plant. Water Res. 20(6), 725–734 (1986).

    CAS 

    Google Scholar 

  • 6.

    Jiang, Z. et al. Tolerance of copepods to short-term thermal stress caused by coastal power stations. J. Therm. Biol. 33(7), 419–423 (2008).

    Article 

    Google Scholar 

  • 7.

    Dziuba, M. K. et al. Temperature increase altered Daphnia community structure in artificially heated lakes: A potential scenario for a warmer future. Sci. Rep. 10(1), 1–13 (2020).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Graf, R. & Wrzesiński, D. Detecting patterns of changes in river water temperature in Poland. Water 12(5), 1327 (2020).

    Article 

    Google Scholar 

  • 9.

    Lee, P. W., Tseng, L. C. & Hwang, J. S. Comparison of mesozooplankton mortality impacted by the cooling systems of two nuclear power plants at the northern Taiwan coast, southern East China Sea. Mar. Pollut. Bull. 136, 114–124 (2018).

    Article 
    CAS 

    Google Scholar 

  • 10.

    Madden, N., Lewis, A. & Davis, M. Thermal effluent from the power sector: An analysis of once-through cooling system impacts on surface water temperature. Environ. Res. Lett. 8, 035006. https://doi.org/10.1088/1748-9326/8/3/035006 (2013).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Łabęcka, A. M., Domagala, J. & Pilecka-Rapacz, M. First record of Corbicula fluminalis (OF Muller, 1774) (Bivalvia: corbiculidae)–in Poland. Folia Malacol. 13(1), 25–27 (2005).

    Article 

    Google Scholar 

  • 12.

    Czerniawski, R., Pilecka-Rapacz, M. & Domagała, J. Zooplankton communities of inter-connected sections of lower River Oder (NW Poland). Open Life Sci. 8(1), 18–29 (2013).

    Article 

    Google Scholar 

  • 13.

    Yousey, A. E. M. et al. Resurrected ancient Daphnia genotypes show reduced thermal stress tolerance compared to modern descendants. R. Soc. Open Sci. 5, 172193. https://doi.org/10.1098/rsos.172193 (2018).

    ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 14.

    Van Urk, G. The effects of a temperature shock on zooplankton. Hydrobiol. Bull. 13(2–3), 101–105 (1979).

    Article 

    Google Scholar 

  • 15.

    Shelford, V. E. Some concepts of bioecology. Ecology 12(3), 455–467 (1931).

    Article 

    Google Scholar 

  • 16.

    Halsband-Lenk, C., Hirche, H. J. & Carlotti, F. Temperature impact on reproduction and development of congener copepod populations. J. Exp. Mar. Biol. Ecol. 271(2), 121–153 (2002).

    Article 

    Google Scholar 

  • 17.

    Hopkin, R. S., Qari, S., Bowler, K., Hyde, D. & Cuculescu, M. Seasonal thermal tolerance in marine Crustacea. J. Exp. Mar. Biol. Ecol. 331(1), 74–81 (2006).

    Article 

    Google Scholar 

  • 18.

    McCauley, E. M. W. W., Murdoch, W. W. & Nisbet, R. M. Growth, reproduction, and mortality of Daphnia pulex Leydig: Life at low food. Funct. Ecol. 5, 505–514 (1990).

    Article 

    Google Scholar 

  • 19.

    Lürling, M., Roozen, F., Van Donk, E. & Goser, B. Response of Daphnia to substances released from crowded congeners and conspecifics. J. Plankton Res. 25(8), 967–978 (2003).

    Article 

    Google Scholar 

  • 20.

    Gliwicz, Z. M., Maszczyk, P. & Uszko, W. Enhanced growth at low population density in Daphnia: The absence of crowding effects or relief from visual predation?. Freshw. Biol. 57(6), 1166–1179 (2012).

    Article 

    Google Scholar 

  • 21.

    Macarthur, J. W. & Baillie, W. H. T. Metabolic activity and duration of life. J. Exp. Zool. 53(2), 221–242 (1929).

    Article 

    Google Scholar 

  • 22.

    Kozłowski, J. Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity. Trends Ecol. Evol. 7(1), 15–19 (1992).

    MathSciNet 
    Article 

    Google Scholar 

  • 23.

    Mitchell, E., Halves, S. J. & Lampert, W. Coexistence of similar genotypes of Daphnia magna in intermittent populations: Response to thermal stress. Oikos 106(3), 469–478 (2004).

    Article 

    Google Scholar 

  • 24.

    Svetlichny, L., Hubareva, E. & Uttieri, M. Ecophysiological and behavioural responses to salinity and temperature stress in cyclopoid copepod Oithona davisae with comments on gender differences. Mediterr. Mar. Sci. 22(1), 80–101 (2021).

    Google Scholar 

  • 25.

    Rahlff, J. et al. Short-term molecular and physiological responses to heat stress in neritic copepods Acartia tonsa and Eurytemora affinis. Comp. Biochem. Physiol. Part A Mol. Integr. 203, 348–358 (2017).

    Article 
    CAS 

    Google Scholar 

  • 26.

    Bradley, B. P., Hakimzadeh, R. & Vincent, J. S. Rapid responses to stress in Eurytemora affinis. In Biology of Copepods: Developments in Hydrobiology Vol. 47 (eds Boxshall, G. A. & Schminke, H. K.) 197–200 (Springer, 1988).

    Chapter 

    Google Scholar 

  • 27.

    Bartholmeé, S., Samchyshyna, L., Santer, B. & Lampert, W. Subitaneous eggs of freshwater copepods pass through fish guts: Survival, hatchability, and potential ecological implications. Limnol. Oceanogr. 50(3), 923–929 (2005).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Belmonte, G. The suspected contradictory role of parental care in the adaption of planktonic calanoida to temporary freshwater. Water 13(1), 100 (2021).

    Article 

    Google Scholar 

  • 29.

    Hoffmeyer, M. S., Biancalana, F. & Berasategui, A. Impact of a power plant cooling system on copepod and meroplankton survival (Bahía Blanca estuary, Argentina). Iheringia Ser. Zool. 95(3), 311–318 (2005).

    Article 

    Google Scholar 

  • 30.

    Williams, P. J., Dick, K. B. & Yampolsky, L. Y. Heat tolerance, temperature acclimation, acute oxidative damage and canalization of haemoglobin expression in Daphnia. Evol. Ecol. 26(3), 591–609 (2012).

    Article 

    Google Scholar 

  • 31.

    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322(5902), 690–692 (2008).

    Article 

    Google Scholar 

  • 32.

    Guzy, R. D. & Schumacker, P. T. Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 91(5), 807–819 (2006).

    Article 
    CAS 

    Google Scholar 

  • 33.

    Cao, S. S. & Kaufman, R. J. Unfolded protein response. Curr. Biol. 22(16), 622–626 (2012).

    Article 
    CAS 

    Google Scholar 

  • 34.

    Young, J. C., Moarefi, I. & Hartl, F. U. Hsp90: A specialized but essential protein-folding tool. The J. Cell Biol. 154(2), 267–274 (2001).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Jolly, C. & Morimoto, R. I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst. 92(19), 1564–1572 (2000).

    Article 
    CAS 

    Google Scholar 

  • 36.

    Mikulski, A., Bernatowicz, P., Grzesiuk, M., Kloc, M. & Pijanowska, J. Differential levels of stress proteins (HSPs) in male and female Daphnia magna in response to thermal stress: A consequence of sex-related behavioral differences?. J. Chem. Ecol. 37(7), 670–676 (2011).

    Article 
    CAS 

    Google Scholar 

  • 37.

    Schumpert, C., Handy, I., Dudycha, J. L. & Patel, R. C. Relationship between heat shock protein 70 expression and life span in Daphnia. Mech. Ageing Dev. 139, 1–10 (2014).

    Article 
    CAS 

    Google Scholar 

  • 38.

    Alekseev, V. R. & Souissi, A. A new species within the Eurytemora affinis complex (Copepoda: Calanoida) from the Atlantic Coast of USA, with observations on eight morphologically different European populations. Zootaxa 2767(1), 41–56 (2011).

    Article 

    Google Scholar 

  • 39.

    Sługocki, Ł., Rymaszewska, A., & Kirczuk, L. To fit or to belong: Characterization of the non-native invader Eurytemora carolleeae (Copepoda: Calanoida) in the Oder River system (Central Europe). Aquat. Invasions 16(3), 443–460 (2021).

    Article 

    Google Scholar 

  • 40.

    Müller, M. F., Colomer, J. & Serra, T. Temperature-driven response reversibility and short-term quasi-acclimation of Daphnia magna. PLoS ONE 13(12), e0209705. https://doi.org/10.1371/journal.pone.0209705 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Correction: Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus

    A peculiar state of matter in layers of semiconductors