Fahad, S. et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 8, 1147 (2017).
Google Scholar
Engelbrecht, B. M., Kursar, T. A. & Tyree, M. T. Drought effects on seedling survival in a tropical moist forest. Trees 19, 312–321 (2005).
Google Scholar
Michaelian, M., Hogg, E. H., Hall, R. J. & Arsenault, E. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob. Change Biol. 17, 2084–2094 (2011).
Google Scholar
Lehner, B., Döll, P., Alcamo, J., Henrichs, T. & Kaspar, F. Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis. Clim. Change 75, 273–299 (2006).
Google Scholar
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).
Google Scholar
IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013).
Nayyar, H., Kaur, S., Singh, S. & Upadhyaya, H. D. Differential sensitivity of Desi (small-seeded) and Kabuli (large-seeded) chickpea genotypes to water stress during seed filling: Effects on accumulation of seed reserves and yield. J. Sci. Food Agric. 86, 2076–2082 (2006).
Google Scholar
Bodner, G., Nakhforoosh, A. & Kaul, H.-P. Management of crop water under drought: A review. Agron. Sustain. Dev. 35, 401–442 (2015).
Google Scholar
Osakabe, Y., Osakabe, K., Shinozaki, K. & Tran, L.-S.P. Response of plants to water stress. Front. Plant Sci. 5, 86 (2014).
Google Scholar
Anjum, S. A. et al. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 6, 2026–2032 (2011).
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. Sustainable Agriculture 153–188 (Springer, Berlin, 2009).
Google Scholar
Schneider, F. & Don, A. Root-restricting layers in German agricultural soils. Part I: extent and cause. Plant Soil 442, 433–451 (2019).
Google Scholar
Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).
Google Scholar
Basu, S., Ramegowda, V., Kumar, A. & Pereira, A. Plant adaptation to drought stress. F1000Research 5 (2016).
Coskun, D., Britto, D. T., Huynh, W. Q. & Kronzucker, H. J. The role of silicon in higher plants under salinity and drought stress. Front. Plant Sci. 7, 1072 (2016).
Google Scholar
Schaller, J., Puppe, D., Kaczorek, D., Ellerbrock, R. & Sommer, M. Silicon cycling in soils revisited. Plants 10, 295 (2021).
Google Scholar
Epstein, E. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. U. S. A. 91, 11–17 (1994).
Google Scholar
Ma, J. F. & Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11, 392–397 (2006).
Google Scholar
Gong, H. J., Chen, K. M., Chen, G. C., Wang, S. M. & Zhang, C. L. Effects of silicon on growth of wheat under drought. J. Plant Nutr. 26, 1055–1063 (2003).
Google Scholar
Hattori, T. et al. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant. 123, 459–466 (2005).
Google Scholar
Chen, W., Yao, X., Cai, K. & Chen, J. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol. Trace Elem. Res. 142, 67–76 (2011).
Google Scholar
Ibrahim, M. A., Merwad, A.-R.M. & Elnaka, E. A. Rice (Oryza Sativa L.) tolerance to drought can be improved by silicon application. Commun. Soil Sci. Plant Anal. 49, 945–957 (2018).
Google Scholar
Alzahrani, Y., Kuşvuran, A., Alharby, H. F., Kuşvuran, S. & Rady, M. M. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotox. Environ. Safe. 154, 187–196 (2018).
Google Scholar
Meunier, J. D. et al. Effect of phytoliths for mitigating water stress in durum wheat. New Phytol. 215, 229–239 (2017).
Google Scholar
Schaller, J., Cramer, A., Carminati, A. & Zarebanadkouki, M. Biogenic amorphous silica as main driver for plant available water in soils. Sci. Rep. 10, 2424 (2020).
Google Scholar
Schaller, J., Frei, S., Rohn, L. & Gilfedder, B. S. Amorphous silica controls water storage capacity and phosphorus mobility in soils. Front. Environ. Sci. 8, 94 (2020).
Google Scholar
Neu, S., Schaller, J. & Dudel, E. G. Silicon availability modifies nutrient use efficiency and content, C:N: P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci. Rep. 7, 40829 (2017).
Google Scholar
Schaller, J. et al. Silicon increases the phosphorus availability of Arctic soils. Sci. Rep. 9, 449 (2019).
Google Scholar
Munné-Bosch, S. & Alegre, L. Die and let live: Leaf senescence contributes to plant survival under drought stress. Funct. Plant Biol. 31, 203–216 (2004).
Google Scholar
Joshi, S. et al. Improved wheat growth and yield by delayed leaf senescence using developmentally regulated expression of a cytokinin biosynthesis gene. Front. Plant Sci. 10, 1285 (2019).
Google Scholar
Rivero, R. M. et al. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. 104, 19631–19636 (2007).
Google Scholar
Chapman, E. A., Orford, S., Lage, J. & Griffiths, S. Capturing and selecting senescence variation in wheat. Front. Plant Sci. 12, 638738 (2021).
Google Scholar
Camp, P. J., Huber, S. C., Burke, J. J. & Moreland, D. E. Biochemical changes that occur during senescence of wheat leaves: I. Basis for the reduction of photosynthesis. Plant Physiol. 70, 1641–1646 (1982).
Google Scholar
Lopes, M. S. & Reynolds, M. P. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J. Exp. Bot. 63, 3789–3798 (2012).
Google Scholar
Rodriguez, D. et al. Modelling the response of wheat canopy assimilation to atmospheric CO2 concentrations. New Phytol. 150, 337–346 (2001).
Google Scholar
Moureaux, C. et al. Carbon balance assessment of a Belgian winter wheat crop (Triticum aestivum L.). Glob. Change Biol. 14, 1353–1366 (2008).
Google Scholar
Gao, X. P., Zou, C. Q., Wang, L. J. & Zhang, F. S. Silicon improves water use efficiency in maize plants. J. Plant Nutr. 27, 1457–1470 (2004).
Google Scholar
Agarie, S., Uchida, H., Agata, W., Kubota, F. & Kaufman, P. B. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Prod. Sci. 1, 89–95 (1998).
Google Scholar
Dakora, F. D. & Nelwamondo, A. Silicon nutrition promotes root growth and tissue mechanical strength in symbiotic cowpea. Funct. Plant Biol. 30, 947–953 (2003).
Google Scholar
Steudle, E. & Peterson, C. A. How does water get through roots?. J. Exp. Bot. 49, 775–788 (1998).
Google Scholar
Gao, X., Zou, C., Wang, L. & Zhang, F. Silicon decreases transpiration rate and conductance from stomata of maize plants. J. Plant Nutr. 29, 1637–1647 (2006).
Google Scholar
Vandegeer, R. K. et al. Silicon deposition on guard cells increases stomatal sensitivity as mediated by K+ efflux and consequently reduces stomatal conductance. Physiol. Plant. 171, 358–370 (2020).
Google Scholar
Flexas, J. & Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 89, 183–189 (2002).
Google Scholar
Kuhla, J., Pausch, J. & Schaller, J. Effect on soil water availability, rather than silicon uptake by plants, explains the beneficial effect of silicon on rice during drought. Plant Cell Environ. (2020).
Schaller, J. et al. Silicon accumulation in rice plant aboveground biomass affects leaf carbon quality. Plant Soil 444, 399–407 (2019).
Google Scholar
IUSS_Working_Group_Wrb. (Food and Agriculture Organization of the United Nations Rome, 2015).
Schüller, H. Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden. Z. Pflanzenernähr. Bodenkd. 123, 48–63 (1969).
Google Scholar
Huth, V. et al. Divergent NEE balances from manual-chamber CO2 fluxes linked to different measurement and gap-filling strategies: A source for uncertainty of estimated terrestrial C sources and sinks?. J. Plant Nutr. Soil Sci. 180, 302–315 (2017).
Google Scholar
Livingston, G. & Hutchinson, G. Enclosure-based measurement of trace gas exchange: applications and sources of error. Biog. Trace Gases Meas. Emiss. Soil Water 51, 14–51 (1995).
Hoffmann, M. et al. Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks: A comparison between automatic chamber-derived C budgets and repeated soil inventories. Biogeosciences 14, 1003–1019 (2017).
Google Scholar
Davidson, E., Savage, K., Verchot, L. & Navarro, R. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric. For. Meteorol. 113, 21–37 (2002).
Google Scholar
Kutzbach, L. et al. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences 4, 1005–1025 (2007).
Google Scholar
Langensiepen, M., Kupisch, M., van Wijk, M. T. & Ewert, F. Analyzing transient closed chamber effects on canopy gas exchange for optimizing flux calculation timing. Agric. For. Meteorol. 164, 61–70 (2012).
Google Scholar
Webb, E. K., Pearman, G. I. & Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc. 106, 85–100 (1980).
Google Scholar
Leiber-Sauheitl, K., Fuß, R., Voigt, C. & Freibauer, A. High greenhouse gas fluxes from grassland on histic gleysol along soil carbon and drainage gradients. Biogeosci. Discuss. 10 (2013).
Adamsen, F. et al. Measuring wheat senescence with a digital camera. Crop Sci. 39, 719–724 (1999).
Google Scholar
Idso, S., Pinter, P. Jr., Jackson, R. & Reginato, R. Estimation of grain yields by remote sensing of crop senescence rates. Remote Sens. Environ. 9, 87–91 (1980).
Google Scholar
Kandel, T. P., Elsgaard, L. & Lærke, P. E. Measurement and modelling of CO2 flux from a drained fen peatland cultivated with reed canary grass and spring barley. Gcb Bioenergy 5, 548–561 (2013).
Google Scholar
Görres, C.-M., Kutzbach, L. & Elsgaard, L. Comparative modeling of annual CO2 flux of temperate peat soils under permanent grassland management. Agr. Ecosyst. Environ. 186, 64–76 (2014).
Google Scholar
Source: Ecology - nature.com