Collar, D. C., Schulte, J. A., O’Meara, B. C. & Losos, J. B. Habitat use affects morphological diversification in dragon lizards. J. Evol. Biol. 23, 1033–1049 (2010).
Google Scholar
Da Silva, F. O. et al. The ecological origins of snakes as revealed by skull evolution. Nat. Commun. 9, 1–11 (2018).
Google Scholar
Vidal-García, M. & Keogh, J. S. Phylogenetic conservatism in skulls and evolutionary lability in limbs – morphological evolution across an ancient frog radiation is shaped by diet, locomotion and burrowing. BMC Evol. Biol. 17, 1–15 (2017).
Google Scholar
Fabre, A.-C., Cornette, R., Goswami, A. & Peigné, S. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans. J. Anat. 226, 596–610 (2015).
Google Scholar
Dumont, M. et al. Do functional demands associated with locomotor habitat, diet, and activity pattern drive skull shape evolution in musteloid carnivorans? Biol. J. Linn. Soc. 117, 858–878 (2015).
Google Scholar
Baeckens, S., Goeyers, C. & Van Damme, R. Convergent evolution of claw shape in a transcontinental lizard radiation. Integr. Comp. Biol. https://doi.org/10.1093/icb/icz151 (2019).
Price, S. A., Holzman, R., Near, T. J. & Wainwright, P. C. Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. Ecol. Lett. 14, 462–469 (2011).
Google Scholar
Price, S. A., Tavera, J. J., Near, T. J. & Wainwright, P. C. Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes. Evolution 67, 417–428 (2012).
Google Scholar
Millien, V. Morphological evolution is accelerated among island mammals. PLoS Biol. 4, 1863–1868 (2006).
Google Scholar
Salvidio, S., Crovetto, F. & Adams, D. C. Potential rapid evolution of foot morphology in Italian plethodontid salamanders (Hydromantes strinatii) following the colonization of an artificial cave. J. Evol. Biol. 28, 1403–1409 (2015).
Google Scholar
Ledbetter, N. M. & Bonett, R. M. Terrestriality constrains salamander limb diversification: implications for the evolution of pentadactyly. J. Evol. Biol. 32, 642–652 (2019).
Google Scholar
McGhee Jr, G. R. Convergent Evolution: Limited Forms Most Beautiful (MIT Press, 2011).
Vullo, R., Allain, R. & Cavin, L. Convergent evolution of jaws between spinosaurid dinosaurs and pike conger eels. Acta Palaeontol. Pol. 61, 825–828 (2016).
Google Scholar
Stayton, C. T. Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution 60, 824–841 (2006).
Google Scholar
Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–5 (2013).
Google Scholar
Sears, K. E. Constraints on the morphological evolution of marsupial shoulder girdles. Evolution 58, 2353–2370 (2004).
Google Scholar
Bennett, C. V. & Goswami, A. Statistical support for the hypothesis of developmental constraint in marsupial skull evolution. BMC Biol. 11, 1–14 (2013).
Google Scholar
Goswami, A. et al. Do developmental constraints and high integration limit the evolution of the marsupial oral apparatus? Integr. Comp. Biol. 56, 404–415 (2016).
Google Scholar
Wake, D. B. & Hanken, J. Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis? Int. J. Dev. Biol. 40, 859–869 (1996).
Google Scholar
Wake, D. B. & Larson, A. Multidimensional analysis of an evolving lineage. Science 238, 42–48 (1987).
Google Scholar
Bonett, R. M. & Blair, A. L. Evidence for complex life cycle constraints on salamander body form diversification. Proc. Natl Acad. Sci. USA 114, 9936–9941 (2017).
Google Scholar
Bardua, C., Wilkinson, M., Gower, D. J., Sherratt, E. & Goswami, A. Morphological evolution and modularity of the caecilian skull. BMC Evol. Biol. 19, 1–23 (2019).
Google Scholar
Schlosser, G. in Modularity: Understanding the Development and Evolution of Natural Complex Systems (eds. Callebaut, W. & Rasskin-Gutman, D.) (MIT Press, 2005).
Moran, N. A. Adaptation and constraint in the complex life cycles of animals. Annu. Rev. Ecol. Syst. 25, 573–600 (1994).
Google Scholar
Ebenman, B. Evolution in organisms that change their niches during the life cycle. Am. Nat. 139, 990–1021 (1992).
Google Scholar
Mallarino, R. et al. Two developmental modules establish 3D beak-shape variation in Darwin’s finches. Proc. Natl Acad. Sci. USA 108, 4057–4062 (2011).
Google Scholar
Liedtke, H. C. et al. Terrestrial reproduction as an adaptation to steep terrain in African toads. Proc. R. Soc. B Biol. Sci. 284, 20162598 (2017).
Google Scholar
Harrington, S. M., Harrison, L. B. & Sheil, C. A. Ossification sequence heterochrony among amphibians. Evol. Dev. 15, 344–364 (2013).
Google Scholar
Bonett, R. M., Phillips, J. G., Ledbetter, N. M., Martin, S. D. & Lehman, L. Rapid phenotypic evolution following shifts in life cycle complexity. Proc. R. Soc. B Biol. Sci. 285, 20172304 (2018).
Google Scholar
Laurent, R. F. Adaptive modifications in frogs of an isolated highland fauna in Central Africa. Evolution 18, 458–467 (1964).
Google Scholar
Moen, D. S., Morlon, H. & Wiens, J. J. Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst. Biol. 65, 146–160 (2016).
Google Scholar
Moen, D. S., Irschick, D. J. & Wiens, J. J. Evolutionary conservatism and convergence both lead to striking similarity in ecology, morphology and performance across continents in frogs. Proc. R. Soc. B Biol. Sci. 280, 1–9 (2013).
Duellman, W. E. & Trueb, L. Biology of the Amphibians (McGraw-Hill publishing company, 1986).
LaBarbera, M. in Patterns and Processes in the History of Life (eds. Raup, D.M. & Jablonski, D.) (Springer, 1986).
Cardini, A. & Polly, P. D. Larger mammals have longer faces because of size-related constraints on skull form. Nat. Commun. 4, 2458 (2013).
Google Scholar
Callery, E. M. & Elinson, R. P. Thyroid hormone-dependent metamorphosis in a direct developing frog. Proc. Natl Acad. Sci. USA 97, 2615–2620 (2000).
Google Scholar
Ziermann, J. M. & Diogo, R. Cranial muscle development in frogs with different developmental modes: direct development versus biphasic development. J. Morphol. 275, 398–413 (2013).
Google Scholar
McDiarmid, R. W. & Altig, R. (eds) Tadpoles: The Biology of Anuran Larvae (University of Chicago Press, 1999).
Altig, R. & Johnston, G. F. Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetol. Monogr. 3, 81–109 (1989).
Google Scholar
Rose, C. S. & Reiss, J. O. in The Skull Volume 1: Development (eds. Hanken, J. & Hall, B. K.) (The University of Chicago Press, 1993).
Callery, E. M., Fang, H. & Elinson, R. P. Frogs without polliwogs: evolution of anuran direct development. BioEssays 23, 233–241 (2001).
Google Scholar
Wake, D. B. & Roth, G. (eds). Complex Organismal Functions: Integration and Evolution in Vertebrates (Wiley, Chichester, UK, 1989).
Weisbecker, V. & Mitgutsch, C. A large-scale survey of heterochrony in anuran cranial ossification patterns. J. Zool. Syst. Evol. Res. 48, 332–347 (2010).
Google Scholar
Dehling, J. M. & Sinsch, U. Partitioning of morphospace in larval and adult reed frogs (Anura: Hyperoliidae: Hyperolius) of the Central African Albertine Rift. Zool. Anz. 280, 65–77 (2019).
Google Scholar
Phung, T. X., Nascimento, J. C. S., Novarro, A. J. & Wiens, J. J. Correlated and decoupled evolution of adult and larval body size in frogs: larval and adult size evolution. Proc. R. Soc. B Biol. Sci. 287, 20201474 (2020).
Google Scholar
Werner, E. E. Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am. Nat. 128, 319–341 (1986).
Google Scholar
Sherratt, E., Vidal-García, M., Anstis, M. & Keogh, J. S. Adult frogs and tadpoles have different macroevolutionary patterns across the Australian continent. Nat. Ecol. Evol. 1, 1385–1391 (2017).
Google Scholar
Wollenberg Valero, K. C. et al. Transcriptomic and macroevolutionary evidence for phenotypic uncoupling between frog life history phases. Nat. Commun. 8, 15213 (2017).
Google Scholar
Trueb, L. in The Skull: Patterns of Structural and Systematic Diversity (eds Hanken, J, & Hall, B. K.) (The University of Chicago Press, 1993).
Trueb, L. in Evolutionary Biology of the Anurans: Contemporary Research on Major Problems (ed. Vial, J. L.) (University of Missouri Press, 1973).
Reiss, J. O. The phylogeny of amphibian metamorphosis. Zoology 105, 85–96 (2002).
Google Scholar
Moore, M. K. & Townsend, V. R. Jr Intraspecific variation in cranial ossification in the tailed frog, Ascaphus truei. J. Herpetol. 37, 714–717 (2003).
Google Scholar
Yeh, J. The evolution of development: two portraits of skull ossification in pipoid frogs. Evolution 56, 2484–2498 (2002).
Google Scholar
Schoch, R. R. Amphibian skull evolution: the developmental and functional context of simplification, bone loss and heterotopy. J. Exp. Zool. B Mol. Dev. Evol. 322B, 619–630 (2014).
Google Scholar
Pereyra, M. O. et al. The complex evolutionary history of the tympanic middle ear in frogs and toads (Anura). Sci. Rep. 6, 1–9 (2016).
Google Scholar
Long, J. A., Young, G. C., Holland, T., Senden, T. J. & Fitzgerald, E. M. G. An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444, 199–202 (2006).
Google Scholar
Daeschler, E. B., Shubin, N. H. & Jenkins, F. A. Jr A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440, 757–763 (2006).
Google Scholar
Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).
Google Scholar
Schlosser, G. Mosaic evolution of neural development in anurans: acceleration of spinal cord development in the direct developing frog Eleutherodactylus coqui. Anat. Embryol. 206, 215–227 (2003).
Google Scholar
Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 115, 555–560 (2018).
Google Scholar
Felice, R. N. et al. Evolutionary integration and modularity in the archosaur cranium. Integr. Comp. Biol. 59, 371–382 (2019).
Google Scholar
Watanabe, A. et al. Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proc. Natl Acad. Sci. USA 116, 14688–14697 (2019).
Google Scholar
Owen, R. On the Archaeopteryx of Von Meyer, with a description of the fossil remains of a long-tailed species from the lithographic stone of Solnhofen. Philos. Trans. R. Soc. Lond. 153, 33–47 (1863).
Google Scholar
Paluh, D. J., Stanley, E. L. & Blackburn, D. C. Evolution of hyperossification expands skull diversity in frogs. Proc. Natl Acad. Sci. USA 117, 8554–8562 (2020).
Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).
Google Scholar
Nevo, E. Adaptive convergence and divergence of subterranean mammals. Annu. Rev. Ecol. Syst. 10, 269–308 (1979).
Google Scholar
Nevo, E. Mammalian evolution underground. The ecological-genetic-phenetic interfaces. Acta Theriol. 3, 9–31 (1995).
Google Scholar
Vogel, S. Life’s Devices: The Physical World of Animals and Plants (Princeton Univ. Press, 1988).
Sansalone, G. et al. Impact of transition to a subterranean lifestyle on morphological disparity and integration in talpid moles (Mammalia, Talpidae). BMC Evol. Biol. 19, 1–15 (2019).
Google Scholar
Nauwelaerts, S., Ramsay, J. & Aerts, P. Morphological correlates of aquatic and terrestrial locomotion in a semi-aquatic frog, Rana esculenta: no evidence for a design conflict. J. Anat. 210, 304–317 (2007).
Google Scholar
Sherratt, E., Gower, D. J., Klingenberg, C. P. & Wilkinson, M. Evolution of cranial shape in caecilians (Amphibia: Gymnophiona). Evol. Biol. 41, 528–545 (2014).
Google Scholar
Cardini, A., Polly, P. D., Dawson, R. & Milne, N. Why the long face? Kangaroos and wallabies follow the same ‘rule’ of cranial evolutionary allometry (CREA) as placentals. Evol. Biol. 42, 169–176 (2015).
Google Scholar
Yeh, J. The effect of miniaturized body size on skeletal morphology in frogs. Evolution 56, 628–641 (2002).
Google Scholar
Wells, K. D. The Ecology and Behavior of Amphibians (University of Chicago Press, 2010).
Emerson, S. B. Skull shape in frogs: correlations with diet. Herpetologica 41, 177–188 (1985).
Carreño, C. A. & Nishikawa, K. C. Aquatic feeding in pipid frogs: the use of suction for prey capture. J. Exp. Biol. 213, 2001–2008 (2010).
Google Scholar
Fernandez, E., Irish, F. & Cundall, D. How a frog, Pipa pipa, succeeds or fails in catching fish. Copeia 105, 108–119 (2017).
Google Scholar
Herrel, A. et al. in Feeding in Vertebrates: Evolution, Morphology, Behavior, Biomechanics (eds. Bels, V. & Whishaw, I. Q.) (Springer, 2019).
Bardua, C. et al. Evolutionary integration of the frog cranium. Evolution 74, 1200–1215 (2020).
Google Scholar
Bon, M., Bardua, C., Goswami, A. & Fabre, A.-C. Cranial integration in the fire salamander, Salamandra salamandra (Caudata: Salamandridae). Biol. J. Linn. Soc. 130, 178–194 (2020).
Fabre, A. et al. Metamorphosis and the evolution of morphological diversity in salamanders. Nat. Ecol. Evol. 4, 1129–1140 (2020).
Nishikawa, K. C. in Feeding: Form, Function and Evolution in Tetrapod Vertebrates (ed. Schwenk, K.) (Academic Press, 2000).
Trueb, L. & Gans, C. Feeding specializations of the Mexican burrowing toad, Rhinophrynus dorsalis (Anura: Rhinophrynidae). J. Zool. 199, 189–208 (1983).
Google Scholar
Nishikawa, K. C., Kier, W. M. & Smith, K. K. Morphology and mechanics of tongue movement in the African pig-nosed frog Hemisus marmoratum: a muscular hydrostatic model. J. Exp. Biol. 202, 771–80 (1999).
Google Scholar
Henrici, A. C. Digging through the past: the evolutionary history of burrowing and underground feeding in rhinophrynid anurans. Palaeobiodivers. Palaeoenviron. 96, 97–109 (2015).
Google Scholar
Van Dijk, D. E. Osteology of the ranoid burrowing African anurans Breviceps and Hemisus. Afr. Zool. 36, 137–141 (2001).
Google Scholar
Womack, M. C., Christensen-Dalsgaard, J., Coloma, L. A. & Hoke, K. L. Sensitive high-frequency hearing in earless and partially eared harlequin frogs (Atelopus). J. Exp. Biol. 221, 1–8 (2018).
Google Scholar
Boistel, R. et al. How minute sooglossid frogs hear without a middle ear. Proc. Natl Acad. Sci. USA 110, 15360–15364 (2013).
Google Scholar
Womack, M. C., Stynoski, J. L., Voyles, M. K., Coloma, L. A. & Hoke, K. L. Prolonged middle ear development in Rhinella horribilis. J. Morphol. 279, 1518–1523 (2018).
Google Scholar
Womack, M. C., Christensen-Dalsgaard, J., Coloma, L. A., Chaparro, J. C. & Hoke, K. L. Earless toads sense low frequencies but miss the high notes. Proc. R. Soc. B Biol. Sci. 284, 20171670 (2017).
Google Scholar
Hetherington, T. E. in The Evolutionary Biology of Hearing (eds. Webster, D. B., Fay, R. R. & Popper, A. N.) (Springer, 1992).
Hanken, J., Klymkowsky, M. W., Summers, C. H., Seufert, D. W. & Ingebrigtsen, N. Cranial ontogeny in the direct-developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), analyzed using whole-mount lmmunohistochemistry. J. Morphol. 211, 95–118 (1992).
Google Scholar
Hanken, J., Klymkowsky, M. W., Alley, K. E. & Jennings, D. H. Jaw muscle development as evidence for embryonic repatterning in direct-developing frogs. Proc. R. Soc. B Biol. Sci. 264, 1349–1354 (1997).
Google Scholar
Wray, G. A. & Raff, R. A. The evolution of developmental strategy in marine invertebrates. Trends Ecol. Evol. 6, 45–50 (1991).
Google Scholar
Watkins, T. B. A quantitative genetic test of adaptive decoupling across metamorphosis for locomotor and life-history traits in the Pacific tree frog, Hyla regilla. Evolution 55, 1668–1677 (2001).
Google Scholar
Wilson, A. D. M. & Krause, J. Personality and metamorphosis: is behavioral variation consistent across ontogenetic niche shifts? Behav. Ecol. 23, 1316–1323 (2012).
Google Scholar
O’Reilly, J. C., Deban, S. M. & Nishikawa., K. C. in Topics in Functional and Ecological Vertebrate Morphology: A Tribute to Frits de Vree (eds. Aerts, P., D’Août, K., Herrel, A. & van Damme, R.) (Shaker Publishing, 2002).
Philips, P. C. Genetic constraints at the metamorphic boundary: morphological development in the wood frog, Rana sylvatica. J. Evol. Biol. 11, 453–463 (1998).
Google Scholar
Johansson, F., Lederer, B. & Lind, M. I. Trait performance correlations across life stages under environmental stress conditions in the common frog, Rana temporaria. PLoS ONE 5, e11680 (2010).
Google Scholar
Wassersug, R. J. The adaptive significance of the tadpole stage with comments on the maintenance of complex life cycles in anurans. Am. Zool. 15, 405–417 (1975).
Google Scholar
Vassilieva, A. B. Heterochronies in the cranial development of Asian tree frogs (Amphibia: Anura: Rhacophoridae) with different life histories. Dokl. Biol. Sci. 473, 110–113 (2017).
Google Scholar
Kerney, R., Meegaskumbura, M., Manamendra-Arachchi, K. & Hanken, J. Cranial ontogeny in Philautus silus (Anura: Ranidae: Rhacophorinae) reveals few similarities with other direct-developing anurans. J. Morphol. 268, 715–725 (2007).
Google Scholar
Heatwole, H. & Davies, M. (eds.) Amphibian biology (volume 5), osteology. (Surrey Beatty & Sons, 2003).
Hanken, J. & Hall, B. K. Skull development during anuran metamorphosis: I. Early development of the first three bones to form–the exoccipital, the parasphenoid, and the frontoparietal. J. Morphol. 195, 247–256 (1988).
Google Scholar
Fink, W. L. The conceptual relationship between ontogeny and phylogeny. Paleobiology 8, 254–264 (1982).
Google Scholar
Strathmann, R. R. in Echinoderm Phylogeny and Evolutionary Biology (eds. Paul, C. R. C. & Smith, A. B.) (Clarendon Press, 1988).
Laloy, F. et al. A re-interpretation of the Eocene anuran Thaumastosaurus based on MicroCT examination of a “mummified” specimen. PLoS ONE 8, e74874 (2013).
Google Scholar
Frost, D. R. et al. The amphibian tree of life. Bull. Am. Mus. Nat. Hist. 297, 1–370 (2006).
Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 435–441 (2010).
Google Scholar
Slater, G. J. & Harmon, L. J. Unifying fossils and phylogenies for comparative analyses of diversification and trait evolution. Methods Ecol. Evol. 4, 699–702 (2013).
Google Scholar
Volume Graphics. VGStudio MAX v. 2.0 (Volume Graphics GmbH, 2001).
Bardua, C., Felice, R. N., Watanabe, A., Fabre, A.-C. & Goswami, A. A practical guide to sliding and surface semilandmarks in morphometric analyses. Integr. Org. Biol. 1, 1–34 (2019).
Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).
Google Scholar
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
Google Scholar
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).
Google Scholar
Wiley, D. F. et al. Evolutionary morphing. In Proc. Visualization Conference (IEEE, 2005).
Schlager, S. in Statistical Shape and Deformation Analysis (eds. Zheng, G., Li, S. & Szekely, G.) (Academic Press, 2017).
Cardini, A. Left, right or both? Estimating and improving accuracy of one-side-only geometric morphometric analyses of cranial variation. J. Zool. Syst. Evol. Res. 55, 1–10 (2016).
Google Scholar
Marshall, A. F. et al. High-density three-dimensional morphometric analyses support conserved static (intraspecific) modularity in caecilian (Amphibia: Gymnophiona) crania. Biol. J. Linn. Soc. 126, 721–742 (2019).
Google Scholar
Bossuyt, F. & Milinkovitch, M. C. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc. Natl Acad. Sci. USA 97, 6585–90 (2000).
Google Scholar
Young, J. E., Christian, K. A., Donnellan, S. C., Tracy, C. R. & Parry, D. Comparative analysis of cutaneous evaporative water loss in frogs demonstrates correlation with ecological habits. Physiol. Biochem. Zool. 78, 847–856 (2005).
Google Scholar
Portik, D. M. & Blackburn, D. C. The evolution of reproductive diversity in Afrobatrachia: a phylogenetic comparative analysis of an extensive radiation of African frogs. Evolution 70, 2017–2032 (2016).
Google Scholar
Scott, E. A phylogeny of ranid frogs (Anura: Ranoidea: Ranidae), based on a simultaneous analysis of morphological and molecular data. Cladistics 21, 507–574 (2005).
Google Scholar
Adams, D. C. & Otárola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).
Google Scholar
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Google Scholar
Clavel, J., Escarguel, G. & Merceron, G. mvmorph: an r package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015).
Google Scholar
Clavel, J., Aristide, L. & Morlon, H. A penalized likelihood framework for high-dimensional phylogenetic comparative methods and an application to new-world monkeys brain evolution. Syst. Biol. 68, 93–116 (2019).
Google Scholar
Clavel, J. & Morlon, H. Reliable phylogenetic regressions for multivariate comparative data: illustration with the MANOVA and application to the effect of diet on mandible morphology in phyllostomid bats. Syst. Biol. 69, 927–943 (2020).
Google Scholar
Housworth, E. A., Martins, E. P. & Lynch, M. The phylogenetic mixed model. Am. Nat. 163, 84–96 (2004).
Google Scholar
Revell, L. J. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1, 319–329 (2010).
Google Scholar
Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).
Google Scholar
Goolsby, E. W., Bruggeman, J. & Ane, C. Rphylopars: phylogenetic comparative tools for missing data and within-species variation. R package version 0.2.11 https://CRAN.R-project.org/package=Rphylopars (2019).
Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).
Google Scholar
Bardua, C. & Goswami, A. Frog skull shape data for modularity and macroevolution. https://doi.org/10.5281/zenodo.4619880 (2020).
Source: Ecology - nature.com