in

Sleep contributes to preference for novel food odours in Drosophila melanogaster

  • 1.

    Medic, G., Wille, M. & Hemels, M. Short- and long-term health consequences of sleep disruption. Nat. Sci. Sleep 9, 151–161 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Randazzo, A. C., Muehlbach, M. J., Schweitzer, P. K. & Walsh, J. K. Cognitive function following acute sleep restriction in children ages 10–14. Sleep 21, 861–868 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Stickgold, R. Sleep-dependent memory consolidation. Nature 437, 1272–1278 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Tononi, G. & Cirelli, C. Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Marshall, L. & Born, J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn. Sci. 11, 442–450 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Smith, C. Sleep states and memory processes in humans: Procedural versus declarative memory systems. Sleep Med. Rev. 5, 491–506 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Johnston, T. D. In Selective Costs and Benefits in the Evolution of Learning. in Advances in the Study of Behavior (eds. Rosenblatt, J. S. et al.) 12, 65–106 (Academic Press, 1982).

  • 8.

    Hendricks, J. C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–138 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Campbell, S. S. & Tobler, I. Animal sleep: A review of sleep duration across phylogeny. Neurosci. Biobehav. Rev. 8, 269–300 (1984).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Shaw, P. J. Correlates of sleep and waking in Drosophila melanogaster. Science (80-). 287, 1834–1837 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Hamblen, M. et al. Germ-line transformation involving DNA from the period locus in Drosophila melanogaster: Overlapping genomic fragments that restore circadian and ultradian rhythmicity to per 0 and per—mutants. J. Neurogenet. 3, 249–291 (1986).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Kirszenblat, L. & van Swinderen, B. Sleep in Drosophila. In Handbook of Sleep Research, Vol. 30 (ed. Dringenberg, H. C.) 333–347 (Elsevier, 2019).

  • 13.

    Ly, S., Pack, A. I. & Naidoo, N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci. Biobehav. Rev. 87, 67–86 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Helfrich-Förster, C. Sleep in insects. Annu. Rev. Entomol. 63, 69–86 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 15.

    Le Glou, E., Seugnet, L., Shaw, P. J., Preat, T. & Goguel, V. Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila. Sleep 35, 1377–1384 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Li, X., Yu, F. & Guo, A. Sleep deprivation specifically impairs short-term olfactory memory in Drosophila. Sleep 32, 1417–1424 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Rihel, J. & Bendor, D. Flies sleep on it, or Fuhgeddaboudit!. Cell 161, 1498–1500 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Geissmann, Q., Beckwith, E. J. & Gilestro, G. F. Most sleep does not serve a vital function: Evidence from Drosophila melanogaster. Sci. Adv. 5, eaau8253 (2019).

    Article 
    CAS 

    Google Scholar 

  • 19.

    Tougeron, K. & Abram, P. K. An ecological perspective on sleep disruption. Am. Nat. 190, E55–E66 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Aulsebrook, A. E., Jones, T. M., Rattenborg, N. C., Roth, T. C. & Lesku, J. A. Sleep ecophysiology: Integrating neuroscience and ecology. Trends Ecol. Evol. 31, 590–599 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Markow, T. A. Host use and host shifts in Drosophila. Curr. Opin. Insect Sci. 31, 139–145 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Badel, L., Ohta, K., Tsuchimoto, Y. & Kazama, H. Decoding of context-dependent olfactory behavior in Drosophila. Neuron 91, 155–167 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Knaden, M., Strutz, A., Ahsan, J., Sachse, S. & Hansson, B. S. Spatial representation of odorant valence in an insect brain. Cell Rep. 1, 392–399 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Hopkins, A. A discussion of C.G. Hewitt’s paper on ‘Insect Behavior’. J. Econ. Entomol. 10, 92–93 (1917).

    Google Scholar 

  • 25.

    Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evol. 19, 411–416 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Barron, A. B. The life and death of Hopkins’ host selection principle. J. Insect Behav. 14, 725–737 (2001).

    Article 

    Google Scholar 

  • 27.

    van Emden, H. F. et al. Plant chemistry and aphid parasitoids (Hymenoptera: Braconidae): Imprinting and memory. Eur. J. Entomol. 105, 477–483 (2008).

    Article 

    Google Scholar 

  • 28.

    Liu, S. S., Li, Y. H., Liu, Y. Q. & Zalucki, M. P. Experience-induced preference for oviposition repellents derived from a non-host plant by a specialist herbivore. Ecol. Lett. 8, 722–729 (2005).

    Article 

    Google Scholar 

  • 29.

    Hamilton, C. E., Beresford, D. V. & Sutcliffe, J. F. Effects of natal habitat odour, reinforced by adult experience, on choice of oviposition site in the mosquito Aedes aegypti. Med. Vet. Entomol. 25, 428–435 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Turlings, T. C. L., Wackers, F. L., Vet, L. E. M., Lewis, W. J. & Tumlinson, J. H. Learning of Host-Finding Cues by Hymenopterous parasitoids. In Insect Learning (eds. Papaj, D. R. & Lewis, W. J.) 51–78 (Springer US, 1993). https://doi.org/10.1007/978-1-4615-2814-2_3

  • 31.

    Jaenike, J. Induction of host preference in Drosophila melanogaster. Oecologia 58, 320–325 (1983).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Takemoto, H., Powell, W., Pickett, J., Kainoh, Y. & Takabayashi, J. Two-step learning involved in acquiring olfactory preferences for plant volatiles by parasitic wasps. Anim. Behav. 83, 1491–1496 (2012).

    Article 

    Google Scholar 

  • 33.

    Andretic, R. & Shaw, P. J. Essentials of sleep recordings in Drosophila: Moving beyond sleep time. Methods Enzymol. 393, 759–772 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Garbe, D. S. et al. Context-specific comparison of sleep acquisition systems in Drosophila. Biol. Open 4, 1558–1568 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Faraway, J. J. Extending the Linear Model with R (CRC Press, 2016). https://doi.org/10.1201/b21296.

    Book 
    MATH 

    Google Scholar 

  • 36.

    Ho, K. S. & Sehgal, A. Drosophila melanogaster: An insect model for fundamental studies of sleep. Methods Enzymol. 393, 1834–1837 (2005).

    Google Scholar 

  • 37.

    Greenspan, R. J., Tononi, G., Cirelli, C. & Shaw, P. J. Sleep and the fruit fly. Trends Neurosci. 24, 142–145 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Killgore, W. D. S. Sleep deprivation and behavioral risk-taking. In Modulation of Sleep by Obesity, Diabetes, Age, and Diet 279–287 (Elsevier, 2015). https://doi.org/10.1016/B978-0-12-420168-2.00030-2.

  • 39.

    Revadi, S. et al. Olfactory responses of Drosophila suzukii females to host plant volatiles. Physiol. Entomol. 40, 54–64 (2015).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Cirelli, C. & Tononi, G. Is sleep essential?. PLoS Biol. 6, 1605–1611 (2008).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Bateson, M., Desire, S., Gartside, S. E. & Wright, G. A. Agitated honeybees exhibit pessimistic cognitive biases. Curr. Biol. 21, 1070–1073 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Wilkin, M. M., Waters, P., McCormick, C. M. & Menard, J. L. Intermittent physical stress during early- and mid-adolescence differentially alters rats’ anxiety- and depression-like behaviors in adulthood. Behav. Neurosci. 126, 344–360 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Chaumet, G. et al. Confinement and sleep deprivation effects on propensity to take risks. Aviat. Space. Environ. Med. 80, 73–80 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Killgore, W. D. S. Effects of sleep deprivation and morningness-eveningness traits on risk-taking. Psychol. Rep. 100, 613–626 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Killgore, W. D. S. et al. Restoration of risk-propensity during sleep deprivation: Caffeine, dextroamphetamine, and modafinil. Aviat. Space. Environ. Med. 79, 867–874 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Tversky, A. & Kahneman, D. Judgment under uncertainty: Heuristics and biases. Science (80-). 185, 1124–1131 (1974).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 47.

    Spieth, H. T. Courtship behavior in Drosophila. Annu. Rev. Entomol. 19, 385–405 (1974).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Bartelt, R. J., Schaner, A. M. & Jackson, L. L. cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J. Chem. Ecol. 11, 1747–1756 (1985).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Cazalé-Debat, L., Houot, B., Farine, J. P., Everaerts, C. & Ferveur, J. F. Flying Drosophila show sex-specific attraction to fly-labelled food. Sci. Rep. 9, 1–13 (2019).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Malek, H. L. & Long, T. A. F. On the use of private versus social information in oviposition site choice decisions by Drosophila melanogaster females. Behav. Ecol. 31, 739–749 (2020).

    Article 

    Google Scholar 

  • 51.

    Inoue, I. et al. Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors. Proc. Natl. Acad. Sci. U. S. A. 93, 13316–13320 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Daffner, K. R., Mesulam, M.-M., Cohen, L. G. & Scinto, L. F. M. Mechanisms underlying diminished novelty-seeking behavior in patients with probable Alzheimer’s disease. Neuropsychiatry Neuropsychol. Behav. Neurol. 12, 58–66 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Lee, A. C. H., Rahman, S., Hodges, J. R., Sahakian, B. J. & Graham, K. S. Associative and recognition memory for novel objects in dementia: Implications for diagnosis. Eur. J. Neurosci. 18, 1660–1670 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Ju, Y.-E.S., Lucey, B. P. & Holtzman, D. M. Sleep and Alzheimer disease pathology—A bidirectional relationship. Nat. Rev. Neurol. 10, 115–119 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Tabuchi, M. et al. Sleep interacts with aβ to modulate intrinsic neuronal excitability. Curr. Biol. 25, 702–712 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Dissel, S. et al. Enhanced sleep reverses memory deficits and underlying pathology in drosophila models of Alzheimer’s disease. Neurobiol. Sleep Circadian Rhythm. 2, 15–26 (2017).

    Article 

    Google Scholar 

  • 57.

    Takano-Shimizu-Kouno, T. KYOTO Stock Center—Department of Drosophila Genomics and Genetic Resources (Kyoto Institute of Technology, 2015).

  • 58.

    Shaw, P. J., Tortoni, G., Greenspan, R. J. & Robinson, D. F. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417, 287–291 (2002).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    https://www.arduino.cc/. Accessed 6 Jan 2021

  • 60.

    https://processing.org/. Accessed 6 Jan 2021


  • Source: Ecology - nature.com

    On course to create a fusion power plant

    Robotic solution for disinfecting food production plants wins agribusiness prize