Medic, G., Wille, M. & Hemels, M. Short- and long-term health consequences of sleep disruption. Nat. Sci. Sleep 9, 151–161 (2017).
Google Scholar
Randazzo, A. C., Muehlbach, M. J., Schweitzer, P. K. & Walsh, J. K. Cognitive function following acute sleep restriction in children ages 10–14. Sleep 21, 861–868 (1998).
Google Scholar
Stickgold, R. Sleep-dependent memory consolidation. Nature 437, 1272–1278 (2005).
Google Scholar
Tononi, G. & Cirelli, C. Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34 (2014).
Google Scholar
Marshall, L. & Born, J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn. Sci. 11, 442–450 (2007).
Google Scholar
Smith, C. Sleep states and memory processes in humans: Procedural versus declarative memory systems. Sleep Med. Rev. 5, 491–506 (2001).
Google Scholar
Johnston, T. D. In Selective Costs and Benefits in the Evolution of Learning. in Advances in the Study of Behavior (eds. Rosenblatt, J. S. et al.) 12, 65–106 (Academic Press, 1982).
Hendricks, J. C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–138 (2000).
Google Scholar
Campbell, S. S. & Tobler, I. Animal sleep: A review of sleep duration across phylogeny. Neurosci. Biobehav. Rev. 8, 269–300 (1984).
Google Scholar
Shaw, P. J. Correlates of sleep and waking in Drosophila melanogaster. Science (80-). 287, 1834–1837 (2000).
Google Scholar
Hamblen, M. et al. Germ-line transformation involving DNA from the period locus in Drosophila melanogaster: Overlapping genomic fragments that restore circadian and ultradian rhythmicity to per 0 and per—mutants. J. Neurogenet. 3, 249–291 (1986).
Google Scholar
Kirszenblat, L. & van Swinderen, B. Sleep in Drosophila. In Handbook of Sleep Research, Vol. 30 (ed. Dringenberg, H. C.) 333–347 (Elsevier, 2019).
Ly, S., Pack, A. I. & Naidoo, N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci. Biobehav. Rev. 87, 67–86 (2018).
Google Scholar
Helfrich-Förster, C. Sleep in insects. Annu. Rev. Entomol. 63, 69–86 (2018).
Google Scholar
Le Glou, E., Seugnet, L., Shaw, P. J., Preat, T. & Goguel, V. Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila. Sleep 35, 1377–1384 (2012).
Google Scholar
Li, X., Yu, F. & Guo, A. Sleep deprivation specifically impairs short-term olfactory memory in Drosophila. Sleep 32, 1417–1424 (2009).
Google Scholar
Rihel, J. & Bendor, D. Flies sleep on it, or Fuhgeddaboudit!. Cell 161, 1498–1500 (2015).
Google Scholar
Geissmann, Q., Beckwith, E. J. & Gilestro, G. F. Most sleep does not serve a vital function: Evidence from Drosophila melanogaster. Sci. Adv. 5, eaau8253 (2019).
Google Scholar
Tougeron, K. & Abram, P. K. An ecological perspective on sleep disruption. Am. Nat. 190, E55–E66 (2017).
Google Scholar
Aulsebrook, A. E., Jones, T. M., Rattenborg, N. C., Roth, T. C. & Lesku, J. A. Sleep ecophysiology: Integrating neuroscience and ecology. Trends Ecol. Evol. 31, 590–599 (2016).
Google Scholar
Markow, T. A. Host use and host shifts in Drosophila. Curr. Opin. Insect Sci. 31, 139–145 (2019).
Google Scholar
Badel, L., Ohta, K., Tsuchimoto, Y. & Kazama, H. Decoding of context-dependent olfactory behavior in Drosophila. Neuron 91, 155–167 (2016).
Google Scholar
Knaden, M., Strutz, A., Ahsan, J., Sachse, S. & Hansson, B. S. Spatial representation of odorant valence in an insect brain. Cell Rep. 1, 392–399 (2012).
Google Scholar
Hopkins, A. A discussion of C.G. Hewitt’s paper on ‘Insect Behavior’. J. Econ. Entomol. 10, 92–93 (1917).
Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evol. 19, 411–416 (2004).
Google Scholar
Barron, A. B. The life and death of Hopkins’ host selection principle. J. Insect Behav. 14, 725–737 (2001).
Google Scholar
van Emden, H. F. et al. Plant chemistry and aphid parasitoids (Hymenoptera: Braconidae): Imprinting and memory. Eur. J. Entomol. 105, 477–483 (2008).
Google Scholar
Liu, S. S., Li, Y. H., Liu, Y. Q. & Zalucki, M. P. Experience-induced preference for oviposition repellents derived from a non-host plant by a specialist herbivore. Ecol. Lett. 8, 722–729 (2005).
Google Scholar
Hamilton, C. E., Beresford, D. V. & Sutcliffe, J. F. Effects of natal habitat odour, reinforced by adult experience, on choice of oviposition site in the mosquito Aedes aegypti. Med. Vet. Entomol. 25, 428–435 (2011).
Google Scholar
Turlings, T. C. L., Wackers, F. L., Vet, L. E. M., Lewis, W. J. & Tumlinson, J. H. Learning of Host-Finding Cues by Hymenopterous parasitoids. In Insect Learning (eds. Papaj, D. R. & Lewis, W. J.) 51–78 (Springer US, 1993). https://doi.org/10.1007/978-1-4615-2814-2_3
Jaenike, J. Induction of host preference in Drosophila melanogaster. Oecologia 58, 320–325 (1983).
Google Scholar
Takemoto, H., Powell, W., Pickett, J., Kainoh, Y. & Takabayashi, J. Two-step learning involved in acquiring olfactory preferences for plant volatiles by parasitic wasps. Anim. Behav. 83, 1491–1496 (2012).
Google Scholar
Andretic, R. & Shaw, P. J. Essentials of sleep recordings in Drosophila: Moving beyond sleep time. Methods Enzymol. 393, 759–772 (2005).
Google Scholar
Garbe, D. S. et al. Context-specific comparison of sleep acquisition systems in Drosophila. Biol. Open 4, 1558–1568 (2015).
Google Scholar
Faraway, J. J. Extending the Linear Model with R (CRC Press, 2016). https://doi.org/10.1201/b21296.
Google Scholar
Ho, K. S. & Sehgal, A. Drosophila melanogaster: An insect model for fundamental studies of sleep. Methods Enzymol. 393, 1834–1837 (2005).
Greenspan, R. J., Tononi, G., Cirelli, C. & Shaw, P. J. Sleep and the fruit fly. Trends Neurosci. 24, 142–145 (2001).
Google Scholar
Killgore, W. D. S. Sleep deprivation and behavioral risk-taking. In Modulation of Sleep by Obesity, Diabetes, Age, and Diet 279–287 (Elsevier, 2015). https://doi.org/10.1016/B978-0-12-420168-2.00030-2.
Revadi, S. et al. Olfactory responses of Drosophila suzukii females to host plant volatiles. Physiol. Entomol. 40, 54–64 (2015).
Google Scholar
Cirelli, C. & Tononi, G. Is sleep essential?. PLoS Biol. 6, 1605–1611 (2008).
Google Scholar
Bateson, M., Desire, S., Gartside, S. E. & Wright, G. A. Agitated honeybees exhibit pessimistic cognitive biases. Curr. Biol. 21, 1070–1073 (2011).
Google Scholar
Wilkin, M. M., Waters, P., McCormick, C. M. & Menard, J. L. Intermittent physical stress during early- and mid-adolescence differentially alters rats’ anxiety- and depression-like behaviors in adulthood. Behav. Neurosci. 126, 344–360 (2012).
Google Scholar
Chaumet, G. et al. Confinement and sleep deprivation effects on propensity to take risks. Aviat. Space. Environ. Med. 80, 73–80 (2009).
Google Scholar
Killgore, W. D. S. Effects of sleep deprivation and morningness-eveningness traits on risk-taking. Psychol. Rep. 100, 613–626 (2007).
Google Scholar
Killgore, W. D. S. et al. Restoration of risk-propensity during sleep deprivation: Caffeine, dextroamphetamine, and modafinil. Aviat. Space. Environ. Med. 79, 867–874 (2008).
Google Scholar
Tversky, A. & Kahneman, D. Judgment under uncertainty: Heuristics and biases. Science (80-). 185, 1124–1131 (1974).
Google Scholar
Spieth, H. T. Courtship behavior in Drosophila. Annu. Rev. Entomol. 19, 385–405 (1974).
Google Scholar
Bartelt, R. J., Schaner, A. M. & Jackson, L. L. cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J. Chem. Ecol. 11, 1747–1756 (1985).
Google Scholar
Cazalé-Debat, L., Houot, B., Farine, J. P., Everaerts, C. & Ferveur, J. F. Flying Drosophila show sex-specific attraction to fly-labelled food. Sci. Rep. 9, 1–13 (2019).
Google Scholar
Malek, H. L. & Long, T. A. F. On the use of private versus social information in oviposition site choice decisions by Drosophila melanogaster females. Behav. Ecol. 31, 739–749 (2020).
Google Scholar
Inoue, I. et al. Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors. Proc. Natl. Acad. Sci. U. S. A. 93, 13316–13320 (1996).
Google Scholar
Daffner, K. R., Mesulam, M.-M., Cohen, L. G. & Scinto, L. F. M. Mechanisms underlying diminished novelty-seeking behavior in patients with probable Alzheimer’s disease. Neuropsychiatry Neuropsychol. Behav. Neurol. 12, 58–66 (1999).
Google Scholar
Lee, A. C. H., Rahman, S., Hodges, J. R., Sahakian, B. J. & Graham, K. S. Associative and recognition memory for novel objects in dementia: Implications for diagnosis. Eur. J. Neurosci. 18, 1660–1670 (2003).
Google Scholar
Ju, Y.-E.S., Lucey, B. P. & Holtzman, D. M. Sleep and Alzheimer disease pathology—A bidirectional relationship. Nat. Rev. Neurol. 10, 115–119 (2014).
Google Scholar
Tabuchi, M. et al. Sleep interacts with aβ to modulate intrinsic neuronal excitability. Curr. Biol. 25, 702–712 (2015).
Google Scholar
Dissel, S. et al. Enhanced sleep reverses memory deficits and underlying pathology in drosophila models of Alzheimer’s disease. Neurobiol. Sleep Circadian Rhythm. 2, 15–26 (2017).
Google Scholar
Takano-Shimizu-Kouno, T. KYOTO Stock Center—Department of Drosophila Genomics and Genetic Resources (Kyoto Institute of Technology, 2015).
Shaw, P. J., Tortoni, G., Greenspan, R. J. & Robinson, D. F. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417, 287–291 (2002).
Google Scholar
https://www.arduino.cc/. Accessed 6 Jan 2021
https://processing.org/. Accessed 6 Jan 2021
Source: Ecology - nature.com