in

Sludge amendment accelerating reclamation process of reconstructed mining substrates

[adace-ad id="91168"]
  • 1.

    Kuang, X. Y., Cao, Y. G., Luo, G. B. & Huang, Y. H. Responses of melilotus officinalis growth to the composition of different topsoil substitute materials in the reclamation of open-pit mining grassland area in Inner Mongolia. Materials 12, 1–21. https://doi.org/10.3390/ma12233888 (2019).

    CAS  Article  Google Scholar 

  • 2.

    Cheng, W., Bian, Z. F., Dong, J. H. & Lei, S. G. Soil properties in reclaimed farmland by filling subsidence basin due to underground coal mining with mineral wastes in China. Trans. Nonferrous Metals Soc. China. 24, 2627–2635. https://doi.org/10.1016/S1003-6326(14)63392-6 (2014).

    CAS  Article  Google Scholar 

  • 3.

    Du, T., Wang, D. M., Bai, Y. J. & Zhang, Z. Z. Optimizing the formulation of coal gangue planting substrate using wastes: The sustainability of coal mine ecological restoration. Ecol. Eng. 143, 1–10. https://doi.org/10.1016/j.ecoleng.2019.105669 (2020).

    Article  Google Scholar 

  • 4.

    Yin, N. N., Zhang, Z., Wang, L. P. & Qian, K. M. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environ. Sci. Pollut. Res. 23, 17840–17849. https://doi.org/10.1007/s11356-016-6941-5 (2016).

    CAS  Article  Google Scholar 

  • 5.

    Clemente, R. et al. Combination of soil organic and inorganic amendments helps plants overcome trace element induced oxidative stress and allows phytostabilisation. Chemosphere 223, 223–231. https://doi.org/10.1016/j.chemosphere.2019.02.056 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 6.

    Wu, D. et al. Integrated application of sewage sludge, earthworms and Jatropha curcas on abandoned rare-earth mine land soil. Chemosphere 214, 47–54. https://doi.org/10.1016/j.chemosphere.2018.09.087 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 7.

    Blankinship, J. C., Fonte, S. J., Six, J. & Schimel, J. P. Plant versus microbial controls on soil aggregate stability in a seasonally dry ecosystem. Geoderma 272, 39–50. https://doi.org/10.1016/j.geoderma.2016.03.008 (2016).

    ADS  Article  Google Scholar 

  • 8.

    Wang, S., Li, T., Zheng, Z. & Chen, H. Y. H. Soil aggregate-associated bacterial metabolic activity and community structure in different aged tea plantations. Sci. Total Environ. 654, 1023–1032. https://doi.org/10.1016/j.scitotenv.2018.11.032 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 9.

    Parvin, S., Van Geel, M., Yeasmin, T., Lievens, B. & Honnay, O. Variation in arbuscular mycorrhizal fungal communities associated with lowland rice (Oryza sativa) along a gradient of soil salinity and arsenic contamination in Bangladesh. Sci. Total Environ. 686, 546–554. https://doi.org/10.1016/j.scitotenv.2019.05.450 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 10.

    Lanfranco, L., Fiorilli, V., Venice, F. & Bonfante, P. Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J. Exp. Bot. 69, 2175–2188. https://doi.org/10.1093/jxb/erx432 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 11.

    Singh, A. K., Rai, A., Pandey, V. & Singh, N. Contribution of glomalin to dissolve organic carbon under different land uses and seasonality in dry tropics. J. Environ. Manag. 192, 142–149. https://doi.org/10.1016/j.jenvman.2017.01.041 (2017).

    CAS  Article  Google Scholar 

  • 12.

    Zhang, J., Ekblad, A., Sigurdsson, B. D. & Wallander, H. The influence of soil warming on organic carbon sequestration of arbuscular mycorrhizal fungi in a sub-arctic grassland. Soil Biol. Biochem. 147, 1–9. https://doi.org/10.1016/j.soilbio.2020.107826 (2020).

    CAS  Article  Google Scholar 

  • 13.

    Singh, A. K., Rai, A. & Singh, N. Effect of long term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain. Geoderma 277, 41–50. https://doi.org/10.1016/j.geoderma.2016.05.004 (2016).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Xiao, L. et al. Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural-succession grassland and Chinese pine forest on the Loess Plateau. Geoderma 334, 1–8. https://doi.org/10.1016/j.geoderma.2018.07.043 (2019).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Qian, K. M., Wang, P. & Yin, N. Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil. Int. J. Min. Sci. Technol. 22, 553–557. https://doi.org/10.1016/j.ijmst.2012.01.019 (2012).

    CAS  Article  Google Scholar 

  • 16.

    Ahirwal, J. & Maiti, S. K. Assessment of carbon sequestration potential of revegetated coal mine overburden dumps: A chronosequence study from dry tropical climate. J. Environ. Manag. 201, 369–377. https://doi.org/10.1016/j.jenvman.2017.07.003 (2017).

    CAS  Article  Google Scholar 

  • 17.

    Yuan, Y., Zhao, Z. Q., Li, X. Z., Wang, Y. Y. & Bai, Z. K. Characteristics of labile organic carbon fractions in reclaimed mine soils: Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China. Sci. Total Environ. 613, 1196–1206. https://doi.org/10.1016/j.scitotenv.2017.09.170 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 18.

    Hassan, W. et al. Labile organic carbon fractions, regulator of CO2 emission: Effect of plant residues and water regimes. Clean: Soil, Air, Water 44, 1358–1367. https://doi.org/10.1002/clen.201400405 (2016).

    CAS  Article  Google Scholar 

  • 19.

    Cheng, X. R., Yu, M. K. & Wang, G. G. Effects of thinning on soil organic carbon fractions and soil properties in Cunninghamia lanceolata stands in Eastern China. Forests. 8, 1–21. https://doi.org/10.3390/f8060198 (2017).

    Article  Google Scholar 

  • 20.

    Zhong, Y. Q. W., Yan, W. M. & Shangguan, Z. P. Soil carbon and nitrogen fractions in the soil profile and their response to long-term nitrogen fertilization in a wheat field. CATENA 135, 38–46. https://doi.org/10.1016/j.catena.2015.06.018 (2015).

    CAS  Article  Google Scholar 

  • 21.

    Wang, Y., Ling, C., Chen, Y., Jiang, X. R. & Chen, G. Q. Microbial engineering for easy downstream processing. Biotechnol. Adv. 37, 1–9. https://doi.org/10.1016/j.biotechadv.2019.03.004 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Ye, G. P. et al. Manure over crop residues increases soil organic matter but decreases microbial necromass relative contribution in upland Ultisols: Results of a 27-year field experiment. Soil Biol. Biochem. 134, 15–24. https://doi.org/10.1016/j.soilbio.2019.03.018 (2019).

    CAS  Article  Google Scholar 

  • 23.

    Du, R. et al. Advanced nitrogen removal with simultaneous Anammox and denitrification in sequencing batch reactor. Bioresour. Technol. 162, 316–322. https://doi.org/10.1016/j.biortech.2014.03.041 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Luna, L. et al. Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. CATENA 143, 256–264. https://doi.org/10.1016/j.catena.2016.04.013 (2016).

    CAS  Article  Google Scholar 

  • 25.

    Hao, X. H. et al. Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils. Nutr. Cycl. Agroecosyst. 81, 17–24. https://doi.org/10.1007/s10705-007-9145-z (2008).

    Article  Google Scholar 

  • 26.

    Fokom, R. et al. Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon. Soil Tillage Res. 120, 69–75. https://doi.org/10.1016/j.still.2011.11.004 (2012).

    Article  Google Scholar 

  • 27.

    Wang, W. et al. Glomalin changes in urban-rural gradients and their possible associations with forest characteristics and soil properties in Harbin City, Northeastern China. J. Environ. Manag. 224, 225–234. https://doi.org/10.1016/j.jenvman.2018.07.047 (2018).

    CAS  Article  Google Scholar 

  • 28.

    Anirwal, J., Kumar, A., Pietrzykowski, M. & Maiti, S. K. Reclamation of coal mine spoil and its effect on Technosol quality and carbon sequestration: A case study from India. Environ. Sci. Pollut. Res. 25, 27992–28003. https://doi.org/10.1007/s11356-018-2789-1 (2018).

    CAS  Article  Google Scholar 

  • 29.

    Sun, S., Li, S., Avera, B. N., Strahm, B. D. & Badgley, B. D. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration. Appl. Environ. Microbiol. 83, 1–14. https://doi.org/10.1128/AEM.00966-17 (2017).

    CAS  Article  Google Scholar 

  • 30.

    Amir, H. et al. Arbuscular mycorrhizal fungi and sewage sludge enhance growth and adaptation of Metrosideros laurifolia on ultramafic soil in New Caledonia: A field experiment. Sci. Total Environ. 651, 334–343. https://doi.org/10.1016/j.scitotenv.2018.09.153 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 31.

    Klabi, R. et al. Interaction between legume and arbuscular mycorrhizal fungi identity alters the competitive ability of warm-season grass species in a grassland community. Soil Biol. Biochem. 70, 176–182. https://doi.org/10.1016/j.soilbio.2013.12.019 (2014).

    CAS  Article  Google Scholar 

  • 32.

    Prasad, R., Tuteja, N. & Varma, A. Mycorrhiza—Nutrient Uptake, Biocontrol Ecorestoration 161–163 (Springer International Publishing, Cham, 2017).

    Google Scholar 

  • 33.

    Becher, P. G. et al. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat. Microbiol. 5, 821–829. https://doi.org/10.1038/s41564-020-0697-x (2020).

    CAS  Article  PubMed  Google Scholar 

  • 34.

    Houston, T. F. & Bougher, N. L. Records of hypogeous mycorrhizal fungi in the diet of some Western Australian bolboceratine beetles (Coleoptera: Geotrupidae, Bolboceratinae). Aust. J. Entomol. 49, 49–55. https://doi.org/10.1111/j.1440-6055.2009.00720.x (2010).

    Article  Google Scholar 

  • 35.

    Han, X. G. et al. Dynamics of arbuscular mycorrhizal fungi in relation to root colonization, spore density, and soil properties among different spreading stages of the exotic plant threeflower beggarweed (Desmodium triflorum) in a Zoysia tenuifolia lawn. Weed Sci. 67, 689–701. https://doi.org/10.1017/wsc.2019.50 (2019).

    Article  Google Scholar 

  • 36.

    Sandeep, S., Manjaiah, K. M., Mayadevi, M. R. & Singh, A. K. Monitoring temperature sensitivity of soil organic carbon decomposition under maize-wheat cropping systems in semi-arid India. Environ. Monit. Assess. 188, 1–15. https://doi.org/10.1007/s10661-016-5455-4 (2016).

    CAS  Article  Google Scholar 

  • 37.

    Ahirwal, J. & Maiti, S. K. Development of Technosol properties and recovery of carbon stock after 16 years of revegetation on coal mine degraded lands, India. CATENA 166, 114–123. https://doi.org/10.1016/j.catena.2018.03.026 (2018).

    CAS  Article  Google Scholar 

  • 38.

    Stumpf, L., Pauletto, E. A. & Pinto, L. F. S. Soil aggregation and root growth of perennial grasses in a constructed clay minesoil. Soil Tillage Res. 161, 71–78. https://doi.org/10.1016/j.still.2016.03.005 (2016).

    Article  Google Scholar 

  • 39.

    Helliwell, J. R. et al. The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface. Sci. Rep. 7, 1–10. https://doi.org/10.1038/s41598-017-14904-w (2017).

    CAS  Article  Google Scholar 

  • 40.

    Fu, W. J. et al. The carbon storage in moso bamboo plantation and its spatial variation in Anji County of southeastern China. J. Soils Sedim. 14, 320–329. https://doi.org/10.1007/s11368-013-0665-7 (2014).

    CAS  Article  Google Scholar 

  • 41.

    Zhang, Z. H., Wang, Q., Wang, H., Nie, S. M. & Liang, Z. W. Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP). Sci. Total Environ. 581, 657–665. https://doi.org/10.1016/jscitotenv.2016.12.176 (2017).

    ADS  Article  PubMed  Google Scholar 

  • 42.

    Janos, D. P., Garamszegi, S. & Beltran, B. Glomalin extraction and measurement. Soil Biol. Biochem. 40, 728–739. https://doi.org/10.1016/j.soilbio.2007.10.007 (2008).

    CAS  Article  Google Scholar 

  • 43.

    Dave, B. P. & Soni, A. Diversity of halophilic Archaea at salt pans around Bhavnagar Coast, Gujarat. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 83, 225–232. https://doi.org/10.1007/s40011-012-0124-z (2013).

    Article  Google Scholar 

  • 44.

    Magurran, A. E. Ecological Diversity and Its Measurement 61–80 (Princeton University Press, Princeton, 1988).

    Google Scholar 


  • Source: Ecology - nature.com

    Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism

    Scientists as engaged citizens