in

Smell of green leaf volatiles attracts white storks to freshly cut meadows

  • 1.

    Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).

    Article 

    Google Scholar 

  • 2.

    Bernays, E. A. & Wcislo, W. T. Sensory capabilities, information processing, and resource specialization. Q. Rev. Biol. 69, 187–204 (1994).

    Article 

    Google Scholar 

  • 3.

    Løkkeborg, S. Feeding behaviour of cod, Gadus morhua: Activity rhythm and chemically mediated food search. Anim. Behav. 56, 371–378 (1998).

    Article 

    Google Scholar 

  • 4.

    Niesterok, B., Krüger, Y., Wieskotten, S., Dehnhardt, G. & Hanke, W. Hydrodynamic detection and localization of artificial flatfish breathing currents by harbour seals (Phoca vitulina). J. Exp. Biol. 220, 174–185 (2017).

    Article 

    Google Scholar 

  • 5.

    Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A. & McGregor, I. S. The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neurosci. Biobehav. Rev. 29, 1123–1144 (2005).

    Article 

    Google Scholar 

  • 6.

    Nevo, O. & Heymann, E. W. Led by the nose: olfaction in primate feeding ecology. Evolutionary Anthropology: Issues, News, and Reviews 24, 137–148 (2015).

    Article 

    Google Scholar 

  • 7.

    Harel, R., Horvitz, N. & Nathan, R. Adult vultures outperform juveniles in challenging thermal soaring conditions. Sci. Rep. 6, 1–8 (2016).

    Article 

    Google Scholar 

  • 8.

    Amo, L., Galván, I., Tomás, G. & Sanz, J. J. Predator odour recognition and avoidance in a songbird. Funct. Ecol. 22, 289–293 (2008).

    Article 

    Google Scholar 

  • 9.

    Nevitt, G. A. Sensory ecology on the high seas: The odor world of the procellariiform seabirds. J. Exp. Biol. 211, 1706–1713 (2008).

    Article 

    Google Scholar 

  • 10.

    Wenzel, B. M. Olfaction 432–448 (Springer, 1971).

    Book 

    Google Scholar 

  • 11.

    Snyder, G. & Peterson, T. Olfactory sensitivity in the black-billed magpie and in the pigeon. Comp. Biochem. Physiol. A Physiol. 62, 921–925 (1979).

    Article 

    Google Scholar 

  • 12.

    Smith, S. A. & Paselk, R. A. Olfactory sensitivity of the turkey vulture (Cathartes aura) to three carrion-associated odorants. Auk 103, 586–592 (1986).

    Article 

    Google Scholar 

  • 13.

    Buitron, D. & Nuechterlein, G. L. Experiments on olfactory detection of food caches by black-billed magpies. Condor 87, 92–95 (1985).

    Article 

    Google Scholar 

  • 14.

    Rhoads, S. N. The power of scent in the turkey vulture. Am. Nat. 17, 829–833 (1883).

    Article 

    Google Scholar 

  • 15.

    Grigg, N. P. et al. Anatomical evidence for scent guided foraging in the turkey vulture. Sci. Rep. 7, 17408 (2017).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Wetmore, A. The role of olfaction in food location by the turkey vulture (Cathartes aura). Oxford University Press (1965).

  • 17.

    Reynolds, A. M., Cecere, J. G., Paiva, V. H., Ramos, J. A. & Focardi, S. Pelagic seabird flight patterns are consistent with a reliance on olfactory maps for oceanic navigation. Proc. R. Soc. B. Biol. Sci. 282, 20150468 (2015).

  • 18.

    Wallraff, H. G. An amazing discovery: Bird navigation based on olfaction. J. Exp. Biol. 218, 1464–1466 (2015).

    Article 

    Google Scholar 

  • 19.

    Steiger, S. S., Fidler, A. E., Valcu, M. & Kempenaers, B. Avian olfactory receptor gene repertoires: Evidence for a well-developed sense of smell in birds?. Proc. R. Soc. Lond. B Biol. Sci. 275, 2309–2317 (2008).

    CAS 

    Google Scholar 

  • 20.

    Gwinner, H. & Berger, S. Starling males select green nest material by olfaction using experience-independent and experience-dependent cues. Anim. Behav. 75, 971–976 (2008).

    Article 

    Google Scholar 

  • 21.

    Krause, E. T. et al. Advances in the Study of Behavior Vol. 50, 37–85 (Elsevier, 2018).

    Google Scholar 

  • 22.

    Bonadonna, F. & Sanz-Aguilar, A. Kin recognition and inbreeding avoidance in wild birds: The first evidence for individual kin-related odour recognition. Anim. Behav. 84, 509–513 (2012).

    Article 

    Google Scholar 

  • 23.

    Halitschke, R., Stenberg, J. A., Kessler, D., Kessler, A. & Baldwin, I. T. Shared signals–‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol. Lett. 11, 24–34 (2008).

    PubMed 

    Google Scholar 

  • 24.

    Baldwin, I. T., Halitschke, R., Paschold, A., Von Dahl, C. C. & Preston, C. A. Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science 311, 812–815 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Koski, T. M. et al. Do insectivorous birds use volatile organic compounds from plants as olfactory foraging cues? Three experimental tests. Ethology 121, 1131–1144 (2015).

    Article 

    Google Scholar 

  • 26.

    Mäntylä, E., Blande, J. D. & Klemola, T. Does application of methyl jasmonate to birch mimic herbivory and attract insectivorous birds in nature?. Arthropod-Plant Interact. 8, 143–153 (2014).

    Article 

    Google Scholar 

  • 27.

    Gagliardo, A., Ioale, P., Filannino, C. & Wikelski, M. Homing pigeons only navigate in air with intact environmental odours: A test of the olfactory activation Hypothesis with GPS data loggers. PLoS ONE https://doi.org/10.1371/journal.pone.0022385 (2011).

  • 28.

    Gagliardo, A. et al. Oceanic navigation in Cory’s shearwaters: Evidence for a crucial role of olfactory cues for homing after displacement. J. Exp. Biol. 216, 2798–2805. https://doi.org/10.1242/jeb.085738 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 29.

    Holland, R. A. et al. Testing the role of sensory systems in the migratory heading of a songbird. J. Exp. Biol. 212, 4065–4071. https://doi.org/10.1242/jeb.034504 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Wikelski, M. et al. True navigation in migrating gulls requires intact olfactory nerves. Sci. Rep. https://doi.org/10.1038/srep17061 (2015).

  • 31.

    Flack, A., Nagy, M., Fiedler, W., Couzin, I. D. & Wikelski, M. From local collective behavior to global migratory patterns in white storks. Science 360, 911–914. https://doi.org/10.1126/science.aap7781 (2018).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Klump, G. M., Kretzschmar, E. & Curio, E. The hearing of an avian predator and its avian prey. Behav. Ecol. Sociobiol. 18, 317–323. https://doi.org/10.1007/BF00299662 (1986).

    Article 

    Google Scholar 

  • 33.

    Wei, J. & Kang, L. Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signal. Behav. 6, 369–371 (2011).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Fall, R., Karl, T., Hansel, A., Jordan, A. & Lindinger, W. Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry. J. Geophys. Res. Atmos. 104, 15963–15974 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Hansson, B. S. From organism to molecule and back-insect olfaction during 40 years. J. Chem. Ecol. 40, 409 (2014).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Roper, T. J. Olfaction in birds. Adv. Study Behav. 28, 247–247 (1999).

    Article 

    Google Scholar 

  • 37.

    Safi, K., Gagliardo, A., Wikelski, M. & Kranstauber, B. How displaced migratory birds could use volatile atmospheric compounds to find their migratory corridor: A test using a particle dispersion model. Front. Behav. Neurosci. https://doi.org/10.3389/fnbeh.2016.00175 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Gagliardo, A. Forty years of olfactory navigation in birds. J. Exp. Biol. 216, 2165–2171 (2013).

    Article 

    Google Scholar 

  • 39.

    Papi, F. Olfactory navigation in birds. Experientia 46, 352–363 (1990).

    Article 

    Google Scholar 

  • 40.

    Hagelin, J. C. & Jones, I. L. Bird odors and other chemical substances: A defense mechanism or overlooked mode of intraspecific communication?. Auk 124, 741–761 (2007).

    Article 

    Google Scholar 

  • 41.

    Pollonara, E. et al. Olfaction and topography, but not magnetic cues, control navigation in a pelagic seabird: Displacements with shearwaters in the Mediterranean Sea. Sci. Rep. 5, 16486 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Helarchaeota and co-occurring sulfate-reducing bacteria in subseafloor sediments from the Costa Rica Margin

    Canopy distribution and microclimate preferences of sterile and wild Queensland fruit flies