Boyer, S., Zhang, H. & Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 102, 213–229 (2012).
Google Scholar
Perez-Mendoza, J., Campbell, J. & Throne, J. Influence of age, mating status, sex, quantity of food, and long-term food deprivation on red four beetle (Coleoptera: Tenebrionidae) fight initiation. J. Econ. Entomol. 104, 2078–2086 (2011).
Google Scholar
Ahmad, F., Ridley, A., Daglish, G. J., Burrill, P. R. & Walter, G. H. Response of Tribolium castaneum and Rhyzopertha dominica to various resources, near and far from grain storage. J. Appl. Entomol. 137, 773–781 (2013).
Google Scholar
Ridley, A. W. et al. The spatiotemporal dynamics of Tribolium castaneum (Herbst): adult flight and gene flow. Mol. Ecol. 20, 1635–1646 (2011).
Google Scholar
Suzuki, T. & Sugawara, R. Isolation of an aggregation pheromone from the flour beetles, Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae). J. Appl. Entomol. 14, 228–230 (1979).
Google Scholar
Suzuki, T. 4,8-Dimethyldecanal: the aggregation pheromone of the flour beetles, Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae). Agric. Biol. Chem. 44, 2519–2520 (1980).
Google Scholar
Suzuki, T. A facile synthesis of 4, 8-dimethyldecanal, aggregation pheromone of flour beetles and its analogues. Agric. Biol. Chem. 45, 2641–2643 (1981).
Google Scholar
Suzuki, T., Kozaki, J., Sugawara, R. & Mori, K. Biological activities of the analogs of the aggregation pheromone of Tribolium castaneum (Coleoptera: Tenebrionidae). Appl. Entomol. Zool. 19, 15–20 (1984).
Google Scholar
Oerke, E. C. & Dehne, H. W. Safeguarding production—losses in major crops and the role of crop protection. Crop. Protect. 23, 275–285 (2004).
Google Scholar
Fan, J., Zhang, T., Bai, S., Wang, Z. & He, K. Evaluation of Bt corn with pyramided genes on efficacy and Insect resistance management for the Asian corn borer in China. PLoS ONE 11, e0168442 (2016).
Google Scholar
He, K. et al. Efficacy of transgenic Bt cotton for resistance to the Asian corn borer (Lepidoptera: Crambidae). Crop. Protect. 25, 167–173 (2006).
Google Scholar
Koutroumpa, F. A. & Jacquin-Joly, E. Sex in the night: Fatty acid derived sex pheromones and corresponding membrane pheromone receptors in insects. Biochimie 107, 15–21 (2014).
Google Scholar
Harari, A.R., Sharon, R. & Weintraub, P.G. Manipulation of insect reproductive systems as a tool in pest control. In Advances in insect control and resistance management. 93–119 Springer, Cham, (2016).
Hussain, A. Chemical ecology of Tribolium castaneum Herbst (Coleoptera: Tenebrionidae): Factors affecting biology and application of pheromone. Dissertation, Oregon State University (1993).
Liebhold, A. M. & Tobin, P. C. Population ecology of insect invasions and their management. Annu. Rev. Entomol. 53, 387–408 (2008).
Google Scholar
Levinson, H. Z. & Mori, K. Chirality determines pheromone activity for flour beetles. Naturwissenschaften 70, 190–192 (1983).
Google Scholar
Olsson, P. O. C. et al. Male-produced sex pheromone in Tribolium confusum: Behavior and investigation of pheromone production locations. J. Stored. Prod. Res. 42, 173–182 (2006).
Google Scholar
Duehl, A. J., Arbogast, R. T. & Teal, P. E. Age and sex related responsiveness of Tribolium castaneum (Coleoptera: Tenebrionidae) in novel behavioral bioassays. Environ. Entomol. 40, 82–87 (2011).
Google Scholar
Verheggen, F. et al. Electrophysiological and behavioral activity of secondary metabolites in the confused flour beetle Tribolium confusum. J. Chem. Ecol. 33, 525–539 (2007).
Google Scholar
Obeng-Ofori, D. & Coaker, T. H. Some factors affecting responses of four stored product beetles (Coleoptera: Tenebrionidae & Bostrichidae) to pheromones. Bull. Entomol. Res. 80, 433–441 (1990).
Google Scholar
Obeng-Ofori, D. & Coaker, T. Tribolium aggregation pheromone: Monitoring, range of attraction and orientation behavior of T. castaneum (Coleoptera: Tenebrionidae). Bull. Entomol. Res. 80, 443–451 (1990).
Google Scholar
Saunders, D. S. Insect circadian rhythms and photoperiodism. Invert. Neurosci. 3, 155–164 (1997).
Google Scholar
Beer, K. & Helfrich-Förster, C. Model and non-model insects in chronobiology. Front. Behav. Neurosci. 14, 601676 (2020).
Google Scholar
Li, C. J., Yun, X. P., Yu, X. J. & Li, B. Functional analysis of the circadian clock gene timeless in Tribolium castaneum. Insect Sci. 25, 418–428 (2018).
Google Scholar
Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24, 948–955 (2007).
Google Scholar
Hideharu, N., Yosuke, M. & Tomoko, I. Common features in diverse insect clocks. Zool. Lett. 1, 1–17 (2015).
Google Scholar
Yujie, L. et al. Anatomical localization and stereoisomeric composition of Tribolium castaneum aggregation pheromones. Naturwissenschaften 98, 755 (2011).
Google Scholar
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25, 402–408 (2001).
Google Scholar
Bates, D., Mächler, M., Bolker, S. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2014).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Software. 82, 1–26 (2017).
Google Scholar
Barton, K. MuMIn: Multi-Model Inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn (2016).
Hughes, M. E., Hogenesch, J. B. & Kornacker, K. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J. Biol. Rhythms. 25, 372–380 (2010).
Google Scholar
Swihart, B. et al. R package version 1.1.2. https://CRAN.R-project.org/package=repeated (2019).
Levine, J. D., Funes, P., Dowse, H. B. & Hall, J. C. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298, 2010–2012 (2002).
Google Scholar
Krupp, J. J. et al. Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr. Biol. 18, 1373–1383 (2008).
Google Scholar
Holman, L., Trontti, K. & Helanterä, K. Queen pheromones modulate DNA methyltransferase activity in bee and ant workers. Biol. Lett. 12, 2015103 (2016).
Google Scholar
Holman, L., Helanterä, H., Trontti, K. & Mikheyev, A. S. Comparative transcriptomics of social insect queen pheromones. Nat. Commun. 10, 159 (2019).
Google Scholar
Grozinger, C. M., Sharabash, N. M., Whitfield, C. W. & Robinson, G. E. Pheromone mediated gene expression in the honeybee brain. Proc. Natl. Acad. Sci. USA 100, 14519–14525 (2003).
Google Scholar
Wanner, K. W. A honey bee odorant receptor for the queen substance 9-oxo-2- decenoic acid. Proc. Natl. Acad. Sci. USA 104, 14383–14388 (2007).
Google Scholar
Beggs, K. T. et al. Queen pheromone modulates brain dopamine function in worker honey bees. Proc. Natl. Acad. Sci. USA 104, 2460–2464 (2007).
Google Scholar
Ma, R., Rangel, J. & Grozinger, C. M. Honey bee (Apis mellifera) larval pheromones may regulate gene expression related to foraging task specialization. BMC Genom. 20, 592 (2019).
Google Scholar
Alaux, C. & Robinson, G. E. Alarm pheromone induces immediate-early gene expression and slow behavioral response in honey bees. J. Chem. Ecol. 33, 1346–1350 (2007).
Google Scholar
O’ceallachain, D. P. & Ryan, M. F. Production and perception of pheromones by the beetle Tribolium confusum. J. Insect Physiol. 23, 1303–1309 (1977).
Google Scholar
Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271–290 (1999).
Google Scholar
Zhang, T. et al. Male- and female-biased gene expression of olfactory-related genes in the antennae of Asian corn borer Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae). PLoS ONE 10, 0128550 (2015).
Balakrishnan, K., Holighaus, G., Weißbecker, B. & Schütz, S. Electroantennographic responses of red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) to volatile organic compounds. J. Appl. Entomol. 141, 477–486 (2017).
Google Scholar
Webb, I. C., Antle, M. C. & Mistlberger, R. E. Regulation of circadian rhythms in mammals by behavioral arousal. Behav. Neurosci. 128, 304 (2014).
Google Scholar
Angelousi, A. et al. Clock genes alterations and endocrine disorders. Eur. J. Clin. Invest. 48, 12927 (2018).
Google Scholar
Silvegren, G., Löfstedt, C. & Rosén, W. Q. Circadian mating activity and effect of pheromone pre-exposure on pheromone response rhythms in the moth Spodoptera littoralis. J. Insect. Phys. 51, 277–286 (2005).
Google Scholar
Lam, V. H. & Chiu, V. C. Evolution and design of invertebrate circadian clocks. Oxford Handbook Invertebrate Neurobiol. https://doi.org/10.1093/oxfordhb/9780190456757.013.25 (2018).
Google Scholar
Chiba, Y., Cutkomp, L. K. & Halberg, F. Circadian oxygen consumption rhythm of the flour beetle Tribolium confusum. J. Insect. Physiol. 19, 2163–2172 (1973).
Google Scholar
Rafter, M. A. Behavior in the presence of resource excess—flight of Tribolium castaneum around heavily-infested grain storage facilities. J. Pest. Sci. 92, 1227–1238 (2019).
Google Scholar
Harano, T. & Miyatake, T. Genetic basis of incidence and period length of circadian rhythm for locomotor activity in populations of a seed beetle. Heredity 105, 268–273 (2010).
Google Scholar
Cheng, Y. & Hardin, P. E. Drosophila photoreceptors contain an autonomous circadian oscillator that can function without period mRNA cycling. J. Neurosci. 18, 741–750 (1998).
Google Scholar
Short, C. A., Meuti, M. E., Zhang, Q. & Denlinger, D. L. Entrainment of eclosion and preliminary ontogeny of circadian clock gene expression in the flesh fly Sarcophaga crassipalpis. J. Insect Physiol. 93, 28–35 (2016).
Google Scholar
Wexler, Y. et al. Mating alters the link between movement activity and pattern in the red flour beetle: the effects of mating on behavior. Physiol. Entomol. 42, 299–306 (2017).
Google Scholar
Gottlieb, D. Agro-chronobiology: Integrating circadian clocks/time biology into storage management. J. Stored. Prod. Res. 82, 9–16 (2019).
Google Scholar
Source: Ecology - nature.com