Bryan, B. A. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193–204 (2018).
Google Scholar
Zhang, W. J., Xue, X., Peng, F., You, Q. G. & Hao, A. H. Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 20, e00774 (2019).
Pan, T., Zou, X. T., Liu, Y. J., Wu, S. H. & He, G. M. Contributions of climatic and non-climatic drivers to grassland variations on the Tibetan Plateau. Ecol. Eng. 108, 307–317 (2017).
Google Scholar
Shen, H. H., Wang, S. P. & Tang, Y. H. Grazing alters warming effects on leaf photosynthesis and respiration in Gentiana straminea, an alpine forb species. J. Plant. Ecol. 6, 418–427 (2013).
Google Scholar
Li, G. Y., Jiang, C. H., Cheng, T. & Bai, J. Grazing alters the phenology of alpine steppe by changing the surface physical environment on the northeast Qinghai-Tibet Plateau, China. J. Environ. Manage. 248, 109257 (2019).
Li, Y. M. et al. Changes of soil microbial community under different degraded gradients of alpine meadow. Agric. Ecosyst. Environ. 222, 213–222 (2016).
Google Scholar
Guo, N. et al. Changes in vegetation parameters and soil nutrients along degradation and recovery successions on alpine grasslands of the Tibetan plateau. Agric. Ecosyst. Environ. 284, 106593 (2019).
Lin, L. et al. Predicting parameters of degradation succession processes of Tibetan Kobresia grasslands. Solid Earth 6, 1237–1246 (2015).
Google Scholar
Li, H. D. et al. Assessing revegetation effectiveness on an extremely degraded grassland, southern Qinghai-Tibetan Plateau, using terrestrial LiDAR and field data. Agric. Ecosyst. Environ. 282, 13–22 (2019).
Google Scholar
Wang, G. X., Qian, J., Cheng, G. D. & Lai, Y. M. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Sci. Total Environ. 291, 207–217. https://doi.org/10.1016/s0048-9697(01)01100-7 (2002).
Google Scholar
Yuan, Z. Q. et al. Responses of soil organic carbon and nutrient stocks to human-induced grassland degradation in a Tibetan alpine meadow. CATENA 178, 40–48 (2019).
Google Scholar
Askari, M. S. & Holden, N. M. Quantitative soil quality indexing of temperate arable management systems. Soil Till Res. 150, 57–67 (2015).
Google Scholar
Lima, A. C. R., Brussaard, L., Totola, M. R., Hoogmoed, W. B. & de Goede, R. G. M. A functional evaluation of three indicator sets for assessing soil quality. Appl. Soil Ecol. 64, 194–200 (2013).
Google Scholar
Masto, R. E., Chhonkar, P. K., Singh, D. & Patra, A. K. Alternative soil quality indices for evaluating the effect of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India. Environ. Monit. Assess 136, 419–435. https://doi.org/10.1007/s10661-007-9697-z (2008).
Google Scholar
Zhou, H. et al. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Sci. Total Environ. 651, 2281–2291 (2019).
Google Scholar
Yang, C., Zhang, F. G., Liu, N., Hu, J. & Zhang, Y. J. Changes in soil bacterial communities in response to the fairy ring fungus Agaricus gennadii in the temperate steppes of China. Pedobiologia 69, 34–40 (2018).
Google Scholar
Li, J. J. & Yang, C. Inconsistent response of soil bacterial and fungal communities in aggregates to litter decomposition during short-term incubation. Peerj 7, e8078 (2019).
Yang, C., Li, J. J., Liu, N. & Zhang, Y. J. Effects of fairy ring fungi on plants and soil in the alpine and temperate grasslands of China. Plant Soil 441, 499–510 (2019).
Google Scholar
Yang, C., Liu, N. & Zhang, Y. J. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma 337, 444–452 (2019).
Google Scholar
Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).
Google Scholar
Wu, G.-L., Ren, G.-H., Dong, Q.-M., Shi, J.-J. & Wang, Y.-L. Above- and belowground response along degradation gradient in an alpine grassland of the Qinghai-Tibetan Plateau. Clean-Soil Air Water 42, 319–323. https://doi.org/10.1002/clen.201200084 (2014).
Google Scholar
Che, R. X. et al. Degraded patch formation significantly changed microbial community composition in alpine meadow soils. Soil Till Res. 195, 104426 (2019).
Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).
Google Scholar
Harris, R. B. Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. J. Arid Environ. 74, 1–12. https://doi.org/10.1016/j.jaridenv.2009.06.014 (2010).
Google Scholar
Ren, G., Shang, Z., Long, R., Hou, Y. & Deng, B. The relationship of vegetation and soil differentiation during the formation of black-soil-type degraded meadows in the headwater of the Qinghai-Tibetan Plateau China. Environ. Earth Sci. 69, 235–245. https://doi.org/10.1007/s12665-012-1951-1 (2013).
Google Scholar
Zhang, Y. et al. Diversity of nitrogen-fixing, ammonia-oxidizing, and denitrifying bacteria in biological soil crusts of a revegetation area in Horqin Sandy Land Northeast China. Ecol. Eng. 71, 71–79. https://doi.org/10.1016/j.ecoleng.2014.07.032 (2014).
Google Scholar
Wang, Y. et al. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Sci. Total Environ. 722, 137910. https://doi.org/10.1016/j.scitotenv.2020.137910 (2020).
Google Scholar
Zhang, Y. et al. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes. Sci. Rep. 7, 43077. https://doi.org/10.1038/srep43077 (2017).
Google Scholar
Hartmann, M. et al. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 8, 226–244. https://doi.org/10.1038/ismej.2013.141 (2014).
Google Scholar
Liu, S. B., Zamanian, K., Schleuss, P. M., Zarebanadkouki, M. & Kuzyakov, Y. Degradation of tibetan grasslands: consequences for carbon and nutrient cycles. Agric. Ecosyst. Environ. 252, 93–104 (2018).
Google Scholar
He, S. Y. & Richards, K. Impact of meadow degradation on soil water status and pasture managementA case study in tibet. Land Degrad. Dev. 26, 468–479. https://doi.org/10.1002/ldr.2358 (2015).
Google Scholar
Yergeau, E., Hogues, H., Whyte, L. G. & Greer, C. W. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J. 4, 1206–1214. https://doi.org/10.1038/ismej.2010.41 (2010).
Google Scholar
Eichorst, S. A. et al. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ. Microbiol. 20, 1041–1063 (2018).
Google Scholar
Fang, D. X. et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions. Bioresour. Technol. 249, 684–693 (2018).
Google Scholar
Mukhopadhya, I., Hansen, R., El-Omar, E. M. & Hold, G. L. IBD—what role do proteobacteria play?. Nat. Rev. Gastroenterol. Hepatol. 9, 219–230. https://doi.org/10.1038/nrgastro.2012.14 (2012).
Google Scholar
Kjoller, A. H. & Struwe, S. Fungal communities, succession, enzymes, and decomposition (2002).
Poll, C., Brune, T., Begerow, D. & Kandeler, E. Small-scale diversity and succession of fungi in the detritusphere of rye residues. Microbial. Ecol. 59, 130–140. https://doi.org/10.1007/s00248-009-9541-9 (2010).
Google Scholar
Jangid, K. et al. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol. Biochem. 43, 2184–2193. https://doi.org/10.1016/j.soilbio.2011.06.022 (2011).
Google Scholar
Cao, C. et al. Soil bacterial community responses to revegetation of moving sand dune in semi-arid grassland. Appl. Microbiol. Biotechnol. 101, 6217–6228. https://doi.org/10.1007/s00253-017-8336-z (2017).
Google Scholar
Tripathi, B. M. et al. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microbial. Ecol. 64, 474–484. https://doi.org/10.1007/s00248-012-0028-8 (2012).
Google Scholar
Chu, H. et al. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau. Environ. Microbiol. 18, 1523–1533. https://doi.org/10.1111/1462-2920.13236 (2016).
Google Scholar
Wu, X. et al. Bacterial communities in the upper soil layers in the permafrost regions on the Qinghai-Tibetan plateau. Appl. Soil Ecol. 120, 81–88. https://doi.org/10.1016/j.apsoil.2017.08.001 (2017).
Google Scholar
Yang, C. et al. Assessing the effect of soil salinization on soil microbial respiration and diversities under incubation conditions. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2020.103671 (2020).
Google Scholar
Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814. https://doi.org/10.1038/nbt.2676 (2013).
Google Scholar
Mermin, J. et al. Reptiles, amphibians, and human Salmonella infection: a population-based, case-control study. Clin. Infect. Dis. 38, S253–S261. https://doi.org/10.1086/381594 (2004).
Google Scholar
Wang, J. et al. Plant community ecological strategy assembly response to yak grazing in an alpine meadow on the eastern Tibetan Plateau. Land Degrad. Dev. 29, 2920–2931. https://doi.org/10.1002/ldr.3050 (2018).
Google Scholar
Ji, S., Geng, Y., Li, D. & Wang, G. Plant coverage is more important than species richness in enhancing aboveground biomass in a premature grassland, northern China. Agric. Ecosyst. Environ. 129, 491–496. https://doi.org/10.1016/j.agee.2008.11.002 (2009).
Google Scholar
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).
Google Scholar
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624. https://doi.org/10.1038/ismej.2012.8 (2012).
Google Scholar
Chen, W. et al. Consistent responses of surface- and subsurface soil fungal diversity to N enrichment are mediated differently by acidification and plant community in a semi-arid grassland. Soil Biol. Biochem. 127, 110–119. https://doi.org/10.1016/j.soilbio.2018.09.020 (2018).
Google Scholar
Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484. https://doi.org/10.1093/nar/gkm882 (2008).
Google Scholar
Source: Ecology - nature.com