in

Soil microbiome predictability increases with spatial and taxonomic scale

  • 1.

    Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry: an Analysis of Global Change (Elsevier/Academic Press, 2012).

  • 2.

    Fernandez, C. W., Langley, J. A., Chapman, S., McCormack, M. L. & Koide, R. T. The decomposition of ectomycorrhizal fungal necromass. Soil Biol. Biochem. 93, 38–49 (2016).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Glassman, S. I. et al. Decomposition responses to climate depend on microbial community composition. Proc. Natl Acad. Sci. USA 115, 11994–11999 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Mushinski, R. M. et al. Microbial mechanisms and ecosystem flux estimation for aerobic NOy emissions from deciduous forest soils. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1814632116 (2019).

  • 5.

    Prosser, J. I. Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–446 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Drews, G. The roots of microbiology and the influence of Ferdinand Cohn on microbiology of the 19th century. FEMS Microbiol. Rev. 24, 225–249 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Chase, J. M. Spatial scale resolves the niche versus neutral theory debate. J. Veg. Sci. 25, 319–322 (2014).

    Article 

    Google Scholar 

  • 11.

    Ricklefs, R. E. & Renner, S. S. Global correlations in tropical tree species richness and abundance reject neutrality. Science 335, 464–467 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Cavender-Bares, J., Keen, A. & Miles, B. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87, S109–S122 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Ladau, J. & Eloe-Fadrosh, E. A. Spatial, temporal, and phylogenetic scales of microbial ecology. Trends Microbiol. 27, 662–669 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457–469 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Diaz, S. & Cabido, M. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 8, 463–474 (1997).

    Article 

    Google Scholar 

  • 17.

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Article 

    Google Scholar 

  • 18.

    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article 

    Google Scholar 

  • 20.

    Whittaker, R. H. Communities and Ecosystems (Macmillan, 1975).

  • 21.

    Gibbons, S. M. Microbial community ecology: function over phylogeny. Nat. Ecol. Evol. 1, 0032 (2017).

    Article 

    Google Scholar 

  • 22.

    Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Dietze, M. C. Ecological Forecasting (Princeton Univ. Press, 2017).

  • 24.

    Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Ramirez, K. S. et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3, 189–196 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Smets, W. et al. A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol. Biochem. 96, 145–151 (2016).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).

  • 28.

    Leibold, M. A., Urban, M. C., De Meester, L., Klausmeier, C. A. & Vanoverbeke, J. Regional neutrality evolves through local adaptive niche evolution. Proc. Natl Acad. Sci. USA 116, 2612–2617 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Dietze, M. & Lynch, H. Forecasting a bright future for ecology. Front. Ecol. Environ. 17, 3 (2019).

    Article 

    Google Scholar 

  • 30.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Todd-Brown, K. E. O. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).

    Article 

    Google Scholar 

  • 32.

    Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 10, 18969–19004 (2013).

    Article 

    Google Scholar 

  • 33.

    Lekberg, Y. et al. More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? New Phytol. 220, 971–976 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 35.

    Running, S., Mu, Q. & Zhao, M. MOD17A3 MODIS/Terra Net Primary Production Yearly L4 Global 1km SIN Grid V055. NASA EOSDIS Land Processes DAAC (NASA, 2011); https://cmr.earthdata.nasa.gov/search/concepts/C198653829-LPDAAC_ECS.html

  • 36.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Albright, M. B. N., Chase, A. B. & Martiny, J. B. H. Experimental evidence that stochasticity contributes to bacterial composition and functioning in a decomposer community. mBio 10, e00568-19 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Berlemont, R. & Martiny, A. C. Phylogenetic distribution of potential cellulases in bacteria. Appl. Environ. Microbiol. 79, 1545–1554 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Ho, A., Lonardo, D. P. D. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. Microbiol. Ecol. https://doi.org/10.1093/femsec/fix006 (2017).

  • 44.

    Wang, L. & Wise, M. J. Glycogen with short average chain length enhances bacterial durability. Naturwissenschaften 98, 719–729 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Soil Microbe Community Composition (DP1.10081.001) (National Ecological Observatory Network (NEON)); https://data.neonscience.org

  • 46.

    Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Change Biol. 24, 4544–4553 (2018).

    Article 

    Google Scholar 

  • 47.

    Pawlowsky-Glahn, V., Egozcue, J. J. & Tolosana-Delgado, R. Modelling and Analysis of Compositional Data (John Wiley & Sons, 2015).

  • 48.

    Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 49.

    Cribari-Neto, F. & Zeileis, A. Beta regression in R. J. Stat. Softw. 34, 1–22 (2010).

    Google Scholar 

  • 50.

    Johnson, N. L., Kotz, S. & Balakrishnan, N. Discrete Multivariate Distributions (Wiley, 1997).

  • 51.

    Plummer, M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In Proc. 3rd International Workshop on Distributed Statistical Computing 1–8 (2003); http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/Plummer.pdf

  • 52.

    Denwood, M. J. runjags: an R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. J. Stat. Softw. 71, 1–25 (2016).

    Article 

    Google Scholar 

  • 53.

    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007).

  • 54.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 55.

    Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The serotonin transporter gene and female personality variation in a free-living passerine

    Keeping humanity central to solving climate change