in

Soil minerals affect taxon-specific bacterial growth

  • 1.

    Roselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev. 2001;25:39–67.

    Google Scholar 

  • 2.

    Certini G, Campbell CD, Edwards AC. Rock fragments in soil support a different microbial community from the fine earth. Soil Biol Biochem. 2004;36:1119–28.

    CAS 

    Google Scholar 

  • 3.

    Carson JK, Rooney D, Gleeson DB, Clipson N. Altering the mineral composition of soil causes a shift in microbial community structure. FEMS Microbiol Ecol. 2007;61:414–23.

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Uroz S, Kelly LC, Turpault M, Lepleux C, Frey-Klett P. The mineralosphere concept: mineralogical control of the distribution and function of mineral-associated bacterial communities. Trends Microbiol. 2015;23:751–62.

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Ahmed E, Hugerth LW, Logue JB, Brüchert V, Andersson AF, Holmström SJ. Mineral type structures soil microbial communities. Geomicrobiol J 2017;34:538–45.

    CAS 

    Google Scholar 

  • 6.

    Whitman T, Neurath R, Perera A, Chu-Jacoby I, Ning D, Zhou J, et al. Microbial community assembly differs across minerals in a rhizosphere microcosm. Environ Microbiol. 2018;20:4444–60.

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Kandeler E, Gebala A, Boeddinghaus RS, Müller K, Rennert T, Soares M, et al. The mineralosphere—succession and physiology of bacteria and fungi colonising pristine minerals in grassland soils under different land-use intensities. Soil Biol Biochem. 2019;136:107534.

    CAS 

    Google Scholar 

  • 8.

    Hassink J, Bouwman LA, Zwart KB, Bloem J, Brussaard L. Relationships between soil texture, physical protection of organic-matter, soil biota, and C-mineralization and N-mineralization in grassland soils. Geoderma 1993;57:105–28.

    CAS 

    Google Scholar 

  • 9.

    Mayer LM, Schick LL, Hardy KR, Wagai R, McCarthy J. Organic matter in small mesopores in sediments and soils. Geochim Cosmochim Acta. 2004;68:3868–72.

    Google Scholar 

  • 10.

    Chenu C, Stotzky G. Interaction between microorganisms and soil particles: an overview. In: Huang PM, Bollag JM, Senesi N, editors. Interactions between soil particles and microorganism: impact on the terrestrial ecosystem. New York: Wiley; 2002. p. 3–40.

  • 11.

    Hemkemeyer M, Pronk GJ, Heister K, Kögel-Knabner I, Martens R, Tebbe CC. Artificial soil studies reveal domain-specific preferences of microorganisms for the colonisation of different soil minerals and particle size fractions. FEMS Microbiol Ecol. 2014;90:770–82.

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Six J, Elliott ET, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem. 2000;32:2099–103.

    CAS 

    Google Scholar 

  • 13.

    Totsche KU, Amelung W, Gerzabek MH, Guggenberger G, Klumpp E, Knief C, et al. Microaggregates in soils. J Plant Nutr Soil Sci. 2018;181:104–36.

    CAS 

    Google Scholar 

  • 14.

    Rasmussen C, Southard RJ, Horwath WR. Litter type and soil minerals control temperate forest soil carbon response to climate change. Glob Change Biol 2008;14:2064–80.

    Google Scholar 

  • 15.

    Hemingway JD, Rothman DH, Grant KE, Rosengard SZ, Eglinton TI, Derry LA, et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 2019;570:228–31.

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Ranjard L, Richaume A. Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol. 2001;152:707–16.

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Poll C, Thiede A, Wermbter N, Sessitsch A, Kandeler E. Micro-scale distribution of microorganisms and microbial enzyme activities in a soil with long-term organic amendment. Eur J Soil Sci. 2003;54:715–24.

    Google Scholar 

  • 18.

    Neumann D, Heuer A, Hemkemeyer M, Martens R, Tebbe CC. Response of microbial communities to long-term fertilization depends on their microhabitat. FEMS Microbiol Ecol. 2013;86:71–84.

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Nie M, Pendall E, Bell C, Wallenstein MD. Soil aggregate size distribution mediates microbial climate change feedbacks. Soil Biol Biochem. 2014;68:357–365.

    CAS 

    Google Scholar 

  • 20.

    Chenu C, Hassink J, Bloem J. Short-term changes in the spatial distribution of microorganisms in soil aggregates as affected by glucose addition. Biol Fertil Soils. 2001;34:349–56.

    CAS 

    Google Scholar 

  • 21.

    Saidy AR, Smernik RJ, Baldock JA, Kaiser K, Sanderman J. The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide. Geoderma. 2013;209:15–21.

    Google Scholar 

  • 22.

    Mikutta R, Kleber M, Torn MS, Jahn R. Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 2006;77:25–56.

    CAS 

    Google Scholar 

  • 23.

    Gadd GM. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology. 2010;156:609–43.

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature 2015;528:60–68.

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Sokol NW, Sanderman J, Bradford MA. Pathways of mineral‐associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry. Glob Change Biol. 2019;25:12–24.

    Google Scholar 

  • 26.

    Skjemstad JO, Janik LJ, Head MJ, McClure SG. High energy ultraviolet photo‐oxidation: a novel technique for studying physically protected organic matter in clay‐and silt‐sized aggregates. J Soil Sci. 1993;44:485–99.

    CAS 

    Google Scholar 

  • 27.

    Goldfarb KC, Karaoz U, Hanson CA, Santee CA, Bradford MA, Treseder KK, et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol. 2011;2:1–10.

    Google Scholar 

  • 28.

    Kleber M, Sollins P, Sutton R. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 2007;85:9–24.

    Google Scholar 

  • 29.

    Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM. Mineral control of soil organic carbon storage and turnover content. Nature 1997;389:3601–3.

    Google Scholar 

  • 30.

    Dahlgren RA, Saigusa M, Ugolini FC. The nature, properties and management of volcanic soils. Adv Agron. 2004;82:113–82.

    CAS 

    Google Scholar 

  • 31.

    Mikutta R, Kleber M, Jahn R. Poorly crystalline minerals protect organic carbon in clay subfractions from acid subsoil horizons. Geoderma 2005;128:106–15.

    CAS 

    Google Scholar 

  • 32.

    Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M. Mineral protection of soil carbon counteracted by root exudates. Nat Clim Change. 2015;5:588–95.

    CAS 

    Google Scholar 

  • 33.

    Rasmussen C, Throckmorton H, Liles G, Heckman K, Meding S, Horwath WR. Controls on soil organic carbon partitioning and stabilization in the California Sierra Nevada. Soil Syst. 2018;2:1–18.

    Google Scholar 

  • 34.

    Zhou Z, Wang C, Luo Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat Comm. 2020;11:1–10.

    CAS 

    Google Scholar 

  • 35.

    Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microb. 2015;81:7570–81.

    CAS 

    Google Scholar 

  • 36.

    Hayer M, Schwartz E, Marks JC, Koch BJ, Morrissey EM, Schuettenberg AA, et al. Identification of growing bacteria during litter decomposition in freshwater through H218O quantitative stable isotope probing. Environ Microbiol Rep. 2016;8:975–82.

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Papp K, Hungate BA, Schwartz E. Microbial rRNA synthesis and growth compared through quantitative stable isotope probing with H218O. Appl Environ Microbiol. 2018;84:1–17.

    Google Scholar 

  • 38.

    Finley BK, Dijkstra P, Rasmussen C, Schwartz E, Liu XA, van Gestel N, et al. Soil mineral assemblage and substrate quality effects on microbial priming. Geoderma2018;322:38–47.

    CAS 

    Google Scholar 

  • 39.

    Rasmussen C, Southard RJ, Horwath WR. Mineral control of organic carbon mineralization in a range of temperate conifer forest soils. Glob Change Biol. 2006;12:834–47.

    Google Scholar 

  • 40.

    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 2012;22:939–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.

    Google Scholar 

  • 45.

    Morrissey EM, Mau RL, Schwartz E, McHugh TA, Dijkstra P, Koch BJ, et al. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME J. 2017;11:1890–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    R Core Team. R: a language and environment for statistical computiong. Vienna: R Foundation for Statistical Computing; 2021. https://www.R-project.org/.

  • 47.

    Dowle M, Srinivasan A. data.table: Extensions of ‘data.frame’. R package version 1.13.6. 2020.

  • 48.

    Oksanen J, Blanchet FG, Kindt R, Legendre P, O’hara RB, Simpson GL, et al. Vegan: community ecology package. R package version 1.17-4. 2010. http://cran.r-project.org.

  • 49.

    Morrissey EM, Mau RL, Hayer M, Liu XJ, Schwartz E, Dijkstra P, et al. Evolutionary history constrains microbial traits across environmental variation. Nat Ecol Evol. 2019;3:1064–9.

    PubMed 

    Google Scholar 

  • 50.

    Pinheiro J, Bates D, DebRoy S, Sarkar D. R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3. 1–137, 2018. https://CRAN.R-project.org/package=nlme .

  • 51.

    Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2018;35:526–8.

    Google Scholar 

  • 52.

    Barter RL, Yu B. Superheat: an R package for creating beautiful and extendable heatmaps for visualizing complex data. J Comput Graph Stat. 2018;27:910–22.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Demoling F, Figueroa D, Bååth E. Comparison of factors limiting bacterial growth in different soils. Soil Biol Biochem. 2007;39:2485–95.

    CAS 

    Google Scholar 

  • 54.

    Kaiser K, Zech W. Sorption of dissolved organic nitrogen by acid subsoil horizons and individual mineral phases. Eur J Soil Sci. 2000;51:403–11.

    CAS 

    Google Scholar 

  • 55.

    Barnhisel RI, Bertsch PM. Chlorites and hydroxy-interlayered vermiculite and smectite. In: Dixon JB, Weed SB editors. Minerals in soils environments, 2nd edn. Madison: Soil Science Society of America, Inc.; 1989. p. 729–88.

  • 56.

    Zunino H, Borie F, Aguilera S, Martin JP, Haider K. Decomposition of C-14- labeled glucose, plant and microbial products and phenols in volcanic ash-derived soils of Chile. Soil Biol Biochem. 1982;14:37–43.

    CAS 

    Google Scholar 

  • 57.

    Baldock JA, Nelson PN. In: Sumner ME editor. Handbook of soil science. Boca Raton: CRC Press; 2000. B25–B84.

  • 58.

    Matus F, Rumpel C, Neculman R, Panichini M, Mora ML. Soil carbon storage and stabilisation in andic soils: a review. Catena. 2014;120:102–10.

    CAS 

    Google Scholar 

  • 59.

    Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ. Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Appl Soil Ecol. 2009;42:183–90.

    Google Scholar 

  • 60.

    McMahon SK, Williams MA, Bottomley PJ, Myrold DD. Dynamics of microbial communities during decomposition of carbon-13 labeled ryegrass fractions in soil. Soil Sci Soc Am J 2005;69:1238–47.

    CAS 

    Google Scholar 

  • 61.

    Vieira S, Sikorski J, Gebala A, Boeddinghaus RS, Marhan S, Rennert T, et al. Bacterial colonization of minerals in grassland soils is selective and highly dynamic. Environ Microbiol. 2020;22:917–33.

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Mille-Lindblom C, Fischer H, Tranvik LJ. Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos 2006;113:233–42.

    Google Scholar 


  • Source: Ecology - nature.com

    J-PAL North America announces five new partnerships with state and local governments

    Machine-learning algorithms for forecast-informed reservoir operation (FIRO) to reduce flood damages