Huang Y, Liu Q, Jia WQ, Yan CR, Wang J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ Pollut. 2020;260:114096.
Google Scholar
Li WF, Wufuer R, Duo J, Wang SZ, Luo YM, Zhang DY, et al. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region. Sci Total Environ. 2020;749:141420.
Google Scholar
Weithmann N, Moller JN, Loder MGJ, Piehl S, Laforsch C, Freitag R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv. 2018;4:eaap8060.
Google Scholar
Jiang JH, Wang XW, Ren HY, Cao GL, Xie GJ, Xing DF, et al. Investigation and fate of microplastics in wastewater and sludge filter cake from a wastewater treatment plant in China. Sci Total Environ. 2020;746:141378.
Google Scholar
Evangeliou N, Grythe H, Klimont Z, Heyes C, Eckhardt S, Lopez-Aparicio S, et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat Commun. 2020;11:3381.
Google Scholar
Roblin B, Ryan M, Vreugdenhil A, Aherne J. Ambient atmospheric deposition of anthropogenic microfibers and microplastics on the western periphery of Europe (Ireland). Environ Sci Technol. 2020;54:11100–8.
Google Scholar
Xu CY, Zhang BB, Gu CJ, Shen CS, Yin SS, Aamir M, et al. Are we underestimating the sources of microplastic pollution in terrestrial environment? J Hazard Mater. 2020;400:123228.
Google Scholar
Machado AAD, Kloas W, Zarfl C, Hempel S, Rillig MC. Microplastics as an emerging threat to terrestrial ecosystems. Glob Change Biol. 2018;24:1405–16.
Google Scholar
Rillig MC, Lehmann A. Microplastic in terrestrial ecosystems. Science. 2020;368:1430–1.
Google Scholar
Fuller S, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction. Environ Sci Technol. 2016;50:5774–80.
Google Scholar
Boots B, Russell CW, Green DS. Effects of microplastics in soil ecosystems: above and below ground. Environ Sci Technol. 2019;53:11496–506.
Google Scholar
Li H-Z, Zhu D, Lindhardt JH, Lin S-M, Ke X, Cui L. Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem. Environ Sci Technol. 2021;55:4658–68.
Google Scholar
Machado AAD, Lau CW, Kloas W, Bergmann J, Bacheher JB, Faltin E, et al. Microplastics can change soil properties and affect plant performance. Environ Sci Technol. 2019;53:6044–52.
Google Scholar
Zhu D, Chen Q-L, An X-L, Yang X-R, Christie P, Ke X, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol Biochem. 2018;116:302–10.
Google Scholar
Amaral-Zettler LA, Zettler ER, Mincer TJ. Ecology of the plastisphere. Nat Rev Microbiol. 2020;18:139–51.
Google Scholar
Arias-Andres M. Who is where in the plastisphere, and why does it matter? Mol Ecol Resour. 2020;20:617–9.
Google Scholar
Wright RJ, Langille MGI, Walker TR. Food or just a free ride? A meta-analysis reveals the global diversity of the plastisphere. ISME J. 2020;15:789–806.
Google Scholar
Yang Y, Liu W, Zhang Z, Grossart H-P, Gadd GM. Microplastics provide new microbial niches in aquatic environments. Appl Microbiol Biot. 2020;104:6501–11.
Google Scholar
Bhagwat G, Zhu Q, O’Connor W, Subashchandrabose S, Grainge I, Knight R, et al. Exploring the composition and functions of plastic microbiome using whole-genome sequencing. Environ Sci Technol. 2021;55:4899–913.
Google Scholar
Arias-Andres M, Klumper U, Rojas-Jimenez K, Grossart HP. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ Pollut. 2018;237:253–61.
Google Scholar
Zhou J, Gui H, Banfield CC, Wen Y, Zang H, Dippold MA, et al. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol Biochem. 2021;156:108211.
Google Scholar
Hernando-Amado S, Coquet TM, Baquero F, Martinez JL. Defining and combating antibiotic resistance from one health and global health perspectives. Nat Microbiol. 2019;4:1432–42.
Google Scholar
Hu H-W, Wang J-T, Singh BK, Liu Y-R, Chen Y-L, Zhang Y-J, et al. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environ Microbiol. 2018;20:3186–200.
Google Scholar
Zhu Y-G, Zhao Y, Zhu D, Gillings M, Penuelas J, Ok YS, et al. Soil biota, antimicrobial resistance and planetary health. Environ Int. 2019;131:105059.
Google Scholar
Bank MS, Ok YS, Swarzenski PW. Microplastic’s role in antibiotic resistance. Science. 2020;369:1315.
Google Scholar
Wu X, Pan J, Li M, Li Y, Bartlam M, Wang Y. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res. 2019;165:114979.
Google Scholar
Yang K, Chen Q-L, Chen M-L, Li H-Z, Liao H, Pu Q, et al. Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization. Environ Sci Technol. 2020;54:11322–32.
Google Scholar
Yang YY, Liu GH, Song WJ, Ye C, Lin H, Li Z, et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ Int. 2019;123:79–86.
Google Scholar
Lu X-M, Lu P-Z, Liu X-P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil. Sci Total Environ. 2020;709:136276.
Google Scholar
Yan XY, Yang XY, Tang Z, Fu JJ, Chen FM, Zhao Y, et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes. Environ Pollut. 2020;262:114270.
Google Scholar
Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.
Google Scholar
Zhu D, Ding J, Yin Y, Ke X, O’Connor P, Zhu Y-G. Effects of earthworms on the microbiomes and antibiotic resistomes of detritus fauna and phyllospheres. Environ Sci Technol. 2020;54:6000–8.
Google Scholar
Zhu Y-G, Zhao Y, Li B, Huang C-L, Zhang S-Y, Yu S, et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol. 2017;2:16270.
Google Scholar
Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol R 2017;81:e00002–17.
Google Scholar
Ogonowski M, Motiei A, Ininbergs K, Hell E, Gerdes Z, Udekwu KI, et al. Evidence for selective bacterial community structuring on microplastics. Environ Microbiol. 2018;20:2796–808.
Google Scholar
Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science. 2019;366:886–90.
Google Scholar
Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Change Biol. 2020;26:3221–9.
Google Scholar
de Nijs EA, Hicks LC, Leizeaga A, Tietema A, Rousk J. Soil microbial moisture dependences and responses to drying-rewetting: the legacy of 18 years drought. Glob Change Biol. 2019;25:1005–15.
Google Scholar
Li MM, Ray P, Teets C, Pruden A, Xia K, Knowlton KF. Short communication: Increasing temperature and pH can facilitate reductions of cephapirin and antibiotic resistance genes in dairy manure slurries. J Dairy Sci. 2020;103:2877–82.
Google Scholar
Luo T, Wang Y, Pandey P. The removal of moisture and antibiotic resistance genes in dairy manure by microwave treatment. Environ Sci Pollut R. 2021;28:6675–83.
Google Scholar
Yun H, Liang B, Ding Y, Li S, Wang Z, Khan A, et al. Fate of antibiotic resistance genes during temperature-changed psychrophilic anaerobic digestion of municipal sludge. Water Res. 2021;194:116926.
Google Scholar
Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, et al. Man-made microbial resistances in built environments. Nat Commun. 2019;10:968.
Google Scholar
Zhu Y-G, Johnson TA, Su J-Q, Qiao M, Guo G-X, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA. 2013;110:3435–40.
Google Scholar
Zhang Y-J, Hu H-W, Chen Q-L, Singh BK, Yan H, Chen D, et al. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ Int. 2019;130:104912.
Google Scholar
Zhou S-Y-D, Zhu D, Giles M, Daniell T, Neilson R, Yang X-R. Does reduced usage of antibiotics in livestock production mitigate the spread of antibiotic resistance in soil, earthworm guts, and the phyllosphere? Environ Int. 2020;136:105359.
Google Scholar
Chen Y, Leng Y, Liu X, Wang J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environ Pollut. 2020;257:113449.
Google Scholar
Xu B, Liu F, Cryder Z, Huang D, Lu Z, He Y, et al. Microplastics in the soil environment: Occurrence, risks, interactions and fate—A review. Crit Rev Env Sci Tec. 2020;50:2175–222.
Google Scholar
Albright MBN, Martiny JBH. Dispersal alters bacterial diversity and composition in a natural community. ISME J. 2018;12:296–9.
Google Scholar
Zhu D, An X-L, Chen Q-L, Yang X-R, Christie P, Ke X, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan. Environ Sci Technol. 2018;52:3081–90.
Google Scholar
Zhu D, Delgado-Baquerizo M, Su J-Q, Ding J, Li H, Gillings MR, et al. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems. Environ Sci Technol. 2021;55:7445–55.
Google Scholar
Berg M, Stenuit B, Ho J, Wang A, Parke C, Knight M, et al. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J 2016;10:1998–2009.
Google Scholar
Liu C, Li H, Zhang Y, Si D, Chen Q. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresour Technol. 2016;216:87–94.
Google Scholar
Zhu D, Xiang Q, Yang X-R, Ke X, O’Connor P, Zhu Y-G. Trophic transfer of antibiotic resistance genes in a soil detritus food chain. Environ Sci Technol. 2019;53:7770–81.
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
Google Scholar
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018;6:90.
Google Scholar
Chen Q, An X, Li H, Su J, Ma Y, Zhu Y-G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ Int. 2016;92-93:1–10.
Google Scholar
Li H, Zhou X-Y, Yang X-R, Zhu Y-G, Hong Y-W, Su J-Q. Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. Sci Total Environ. 2019;665:61–8.
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:884–90.
Google Scholar
Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006;34:5623–30.
Google Scholar
Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol. 2006;8:732–40.
Google Scholar
Brown LD, Cai TT, DasGupta A, Agresti A, Coull BA, Casella G, et al. Interval estimation for a binomial proportion—comment—rejoinder. Stat Sci. 2001;16:101–33.
Google Scholar
Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655–64.
Google Scholar
Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.
Google Scholar
Wemheuer F, Taylor JA, Daniel R, Johnston E, Meinicke P, Thomas T, et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ Microbiome. 2020;15:11.
Google Scholar
Frere L, Maignien L, Chalopin M, Huvet A, Rinnert E, Morrison H, et al. Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environ Pollut. 2018;242:614–25.
Google Scholar
Parrish K, Fahrenfeld NL. Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class. Environ Sci-Wat Res. 2019;5:495–505.
Google Scholar
Hossain MR, Jiang M, Wei Q, Leff LG. Microplastic surface properties affect bacterial colonization in freshwater. J Basic Micro. 2019;59:54–61.
Google Scholar
Hammarlund SP, Harcombe WR. Refining the stress gradient hypothesis in a microbial community. Proc Natl Acad Sci USA. 2019;116:15760–62.
Google Scholar
Hesse E, O’Brien S, Luján AM, Sanders D, Bayer F, van Veen EM, et al. Stress causes interspecific facilitation within a compost community. Ecol Lett. 2021;00:1–9.
Kurtz ZD, Mueller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.
Google Scholar
Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci USA. 2015;112:6449–54.
Google Scholar
Adair KL, Wilson M, Bost A, Douglas AE. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. ISME J. 2018;12:959–72.
Google Scholar
Bryant JA, Clemente TM, Viviani DA, Fong AA, Thomas KA, Kemp P, et al. Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. Msystems. 2016;1:e00024–16.
Google Scholar
Kwon J-H, Chang S, Hong SH, Shim WJ. Microplastics as a vector of hydrophobic contaminants: Importance of hydrophobic additives. Integr Environ Assess. 2017;13:494–9.
Google Scholar
Xiang Q, Zhu D, Chen Q-L, O’Connor P, Yang X-R, Qiao M, et al. Adsorbed sulfamethoxazole exacerbates the effects of polystyrene (similar to 2 mm) on gut microbiota and the antibiotic resistome of a soil collembolan. Environ Sci Technol. 2019;53:12823–34.
Google Scholar
Virsek MK, Lovsin MN, Koren S, Krzan A, Peterlin M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar Pollut Bull. 2017;125:301–9.
Google Scholar
Caruso G. Microplastics as vectors of contaminants. Mar Pollut Bull. 2019;146:921–4.
Google Scholar
MacLean RC, San Millan A. The evolution of antibiotic resistance. Science. 2019;365:1082–3.
Google Scholar
Li J, Zhang K, Zhang H. Adsorption of antibiotics on microplastics. Environ Pollut. 2018;237:460–7.
Google Scholar
Zhang H, Wang J, Zhou B, Zhou Y, Dai Z, Zhou Q, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environ Pollut. 2018;243:1550–7.
Google Scholar
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406:959–64.
Google Scholar
Source: Ecology - nature.com