Mahanty, B., Pakshirajan, K. & Dasu, V. V. Understanding the complexity and strategic evolution in PAH remediation research. Crit. Rev. Environ. Sci. Technol. 41, 1697–1746. https://doi.org/10.1080/10643389.2010.481586 (2011).
Google Scholar
Meador, J. P. Polycyclic aromatic hydrocarbons. Encyclopedia of Ecology Vol. 4 (eds Jørgensen, S. E. & Fath, B. D.) 2881–2891 (Oxford: Elsevier, 2008).
Gong, Z., Alef, K., Wilke, B. M. & Li, P. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation. J. Hazard Mater. 143, 372–378. https://doi.org/10.1016/j.jhazmat.2006.09.037 (2007).
Google Scholar
Smith, M. J., Flowers, T. H., Duncan, H. J. & Alder, J. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ. Poll. 141, 519–525. https://doi.org/10.1016/j.envpol.2005.08.061 (2006).
Google Scholar
Mackay, D., Shiu, W. Y. & Lee, S. C. Handbook of Physical–Chemical Properties and Environmental Fate for Organic Chemicals (CRC Press, 2006).
Google Scholar
Zhou, Q., Sun, F. & Liu, R. Joint chemical flushing of soils contaminated with petroleum hydrocarbons. Environ. Int. 31, 835–839. https://doi.org/10.1016/j.envint.2005.05.039 (2005).
Google Scholar
Wang, C. et al. Elemental carbon components and PAHs in soils from different areas of the Yangtze River Delta region, China and their relationship. CATENA 199, 105086. https://doi.org/10.1016/j.catena.2020.105086 (2021).
Google Scholar
Hao, R., Wan, H. F., Song, Y. T., Jiang, H. & Peng, S. L. Polycyclic aromatic hydrocarbons in agricultural soils of the southern subtropics, China. Pedosphere 17, 673–680. https://doi.org/10.1016/S1002-0160(07)60081-2 (2007).
Google Scholar
Dandie, C. E. et al. Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils. Chemosphere 81, 1061–1068. https://doi.org/10.1016/j.chemosphere.2010.09.059 (2010).
Google Scholar
Liu, S. et al. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: Spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs). Chemosphere 82, 223–228. https://doi.org/10.1016/j.chemosphere.2010.10.017 (2011).
Google Scholar
Terytze, K. et al. Detection and determination limits of priority organic pollutants in soil. Chemosphere 31, 3051–3083. https://doi.org/10.1016/0045-6535(95)00166-6 (1995).
Google Scholar
Han, Y. M. et al. Stronger association of polycyclic aromatic hydrocarbons with soot than with char in soils and sediments. Chemosphere 119, 1335–1345. https://doi.org/10.1016/j.chemosphere.2014.02.021 (2015).
Google Scholar
Duan, L. et al. Effect of ageing on benzo[a]pyrene extractability in contrasting soils. J. Hazard Mater. 296, 175–184. https://doi.org/10.1016/j.jhazmat.2015.04.050 (2015).
Google Scholar
Luo, L., Zhang, S. & Ma, Y. Evaluation of impacts of soil fractions on phenanthrene sorption. Chemosphere 72, 891–896. https://doi.org/10.1016/j.chemosphere.2008.03.051 (2008).
Google Scholar
Ukalska-Jaruga, A., Debaene, G. & Smreczak, B. Dissipation and sorption processes of polycyclic aromatic hydrocarbons (PAHs) to organic matter in soils amended by exogenous rich-carbon material. J. Soils Sediments 20, 836–849. https://doi.org/10.1007/s11368-019-02455-8 (2020).
Google Scholar
Błońska, E., Lasota, J., Szuszkiewicz, M., Łukasik, A. & Klamerus-Iwan, A. Assessment of forest soil contamination in Krakow surroundings in relation to the type of stand. Environ. Earth Sci. 75, 1–15. https://doi.org/10.1007/s12665-016-6005-7 (2016).
Google Scholar
Lasota, J. & Błońska, E. Polycyclic aromatic hydrocarbons content in contaminated forest soils with different humus types. Water Air Soil Poll. 229, 204. https://doi.org/10.1007/s11270-018-3857-3 (2018).
Google Scholar
Pająk, M. et al. Restoration of vegetation in relation to soil properties of spoil heap heavily contaminated with heavy metals. Water Air Soil Poll. 229, 392. https://doi.org/10.1007/s11270-018-4040-6 (2018).
Google Scholar
Lasota, J., Błońska, E., Łyszczarz, S. & Tibbett, M. Forest humus type governs heavy metal accumulation in specific organic matter fractions. Water Air Soil Poll. 231, 80. https://doi.org/10.1007/s11270-020-4450-0 (2020).
Google Scholar
Pająk, M., Błońska, E., Frąc, M. & Oszust, K. Functional diversity and microbial activity of forest soils that are heavily contaminated by lead and zinc. Water Air Soil Poll. 227, 348. https://doi.org/10.1007/s11270-016-3051-4 (2016).
Google Scholar
Chaudhary, P., Singh, S. B., Chaudhry, S. & Nain, L. Impact of PAH on biological health parameters of soils of an Indian refinery and adjoining agricultural area—A case study. Environ. Monit. Assess. 184, 1145–1156. https://doi.org/10.1007/s10661-011-2029-3 (2012).
Google Scholar
Łukasik, A., Szuszkiewicz, M., Wanic, T. & Gruba, P. Three-dimensional model of magnetic susceptibility in forest topsoil: An indirect method to discriminate contaminant migration. Environ. Pollut. 273, 116491. https://doi.org/10.1016/j.envpol.2021.116491 (2021).
Google Scholar
Magiera, T., Jabłońska, M., Strzyszcz, Z. & Rachwal, M. Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos. Environ. 45, 4281–4290. https://doi.org/10.1016/j.atmosenv.2011.04.076 (2011).
Google Scholar
Hulett, L. D., Weinberger, A. J., Northcutt, K. J. & Ferguson, M. Chemical species in fly ash from coal-burning power plants. Science 210, 1356–1358. https://doi.org/10.1126/science.210.4476.1356 (1980).
Google Scholar
Chaparro, M. A. E., Gogorza, C. S. G., Lavat, A., Pazos, S. & Sinito, A. M. Preliminary results of magnetic characterisation of different soils in the Tandil region (Argentina) affected by pollution by a metallurgical factory. Eur. J. Environ. Eng. Geophys. 7, 35–38 (2002).
Fabijańczyk, P., Zawadzki, J., Magiera, T. & Szuszkiewicz, M. A methodology of integration of magnetometric and geochemical soil contamination measurements. Geoderma 277, 51–60. https://doi.org/10.1016/j.geoderma.2016.05.009 (2016).
Google Scholar
Łukasik, A., Magiera, T., Lasota, J. & Błońska, E. Background value of magnetic susceptibility in forest topsoil: Assessment on the basis of studies conducted in forest preserves of Poland. Geoderma 264, 140–149. https://doi.org/10.1016/j.geoderma.2015.10.009 (2016).
Google Scholar
Yu, X., Wang, Y. & Lu, S. Tracking the magnetic carriers of heavy metals in contaminated soils based on X-ray microprobe techniques and wavelet transformation. J. Hazard Mater. 381, 121114. https://doi.org/10.1016/j.jhazmat.2019.121114 (2020).
Google Scholar
Jordanova, N., Jordanova, D. & Tsacheva, T. Application of magnetometry for delineation of anthropogenic pollution in areas covered by various soil types. Geoderma 144, 557–571. https://doi.org/10.1016/j.geoderma.2008.01.021 (2008).
Google Scholar
Petrovský, E. et al. Magnetic mapping of distribution of wood ash used for fertilization of forest soil. Sci. Total Environ. 626, 228–234. https://doi.org/10.1016/j.scitotenv.2018.01.095 (2018).
Google Scholar
Asgari, N., Ayoubi, S. & Demattê, J. A. M. Soil drainage assessment by magnetic susceptibility measures in western Iran. Geoderma Reg. 13, 35–42. https://doi.org/10.1016/j.geodrs.2018.03.003 (2018).
Google Scholar
Menshov, O. et al. Soil and dust magnetism in semi-urban area Truskavets, Ukraine. Environ. Earth Sci. 79, 1–10. https://doi.org/10.1007/s12665-020-08924-5 (2020).
Google Scholar
Xu, S. et al. Contents of heavy metals and PAHs and their relationships with magnetic susceptibility in soils of vegetable base in Fuzhou City. Chin. J. Environ. Eng. 11, 4861–4867. https://doi.org/10.12030/j.cjee.201607118 (2017).
Google Scholar
IUSS Working Group WRB. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. https://doi.org/10.1017/S0014479706394902 (2014).
Sanaullah, M., Razavi, B. S., Blagodatskaya, E. & Kuzyakov, Y. Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface. Biol. Fertil. Soils 52, 505–514. https://doi.org/10.1007/s00374-016-1094-8 (2016).
Google Scholar
Pritsch, K. et al. A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J. Microb. Met. 58, 233–241. https://doi.org/10.1016/j.mimet.2004.04.001 (2004).
Google Scholar
Turner, B. L. Variation in ph optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microbiol. 76, 6485–6493. https://doi.org/10.1128/AEM.00560-10 (2010).
Google Scholar
Jenkinson, D. S. & Powlson, D. S. The effects of biocidal treatments on metabolism in soil-I. Fumigation with chloroform. Soil Biol. Biochem. 8, 167–177. https://doi.org/10.1016/0038-0717(76)90001-8 (1976).
Google Scholar
Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6 (1987).
Google Scholar
Dearing, J. A. Environmental Magnetic Susceptibility. Using the Bartington MS2 System 2nd edn. (Chi Publishing, 1999).
Quenea, K., Lamy, I., Winterton, P., Bermond, A. & Dumat, C. Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 1, 217–223. https://doi.org/10.1016/j.geoderma.2008.11.037 (2009).
Google Scholar
Yu, H., Xiao, H. & Wang, D. Effects of soil properties and biosurfactant on the behavior of PAHs in soil-water systems. Environ. Syst. Res. 3, 6. https://doi.org/10.1186/2193-2697-3-6 (2014).
Google Scholar
Singh, S. K. & Haritash, A. K. Polycyclic aromatic hydrocarbons: Soil pollution and remediation. Inter. J. Environ. Sci. Technol. 16, 6489–6512. https://doi.org/10.1007/s13762-019-02414-3 (2019).
Google Scholar
Banach-Szott, M., Debska, B., Wisniewska, A. & Pakula, J. Changes in the contents of selected polycyclic aromatic hydrocarbons in soils of various types. Environ. Sci. Pollut. Res. 22, 5059–5069. https://doi.org/10.1007/s11356-014-3901-9 (2015).
Google Scholar
Han, B., Ding, X., Bai, Z., Kong, S. & Guo, G. Source analysis of particulate matter associated polycyclic aromatic hydrocarbons (PAHs) in an industrial city in northeastern China. J. Environ. Monit. 13, 2597–2604. https://doi.org/10.1039/c1em10251f (2011).
Google Scholar
Srogi, K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 5, 169–195. https://doi.org/10.1007/s10311-007-0095-0 (2007).
Google Scholar
Fu, G., Kan, A. T. & Tomson, M. Adsorption and desorption hysteresis of pahs in surface sediment. Environ. Toxicol. Chem. 13, 1559–1567. https://doi.org/10.1002/etc.5620131003 (1994).
Google Scholar
Maliszewska-Kordybach, B. & Smreczak, B. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ. Inter. 28, 719–728. https://doi.org/10.1016/S0160-4120(02)00117-4 (2003).
Google Scholar
Baran, S., Bielińska, J. E. & Oleszczuk, P. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma 118, 221–232. https://doi.org/10.1016/S0016-7061(03)00205-2 (2004).
Google Scholar
Wang, C., Sun, H., Li, J., Li, Y. & Zhang, Q. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere 77, 733–738. https://doi.org/10.1016/j.chemosphere.2009.08.028 (2009).
Google Scholar
Feng, Y. et al. Soil microbial communities under conventional-till and no-till continuous cotton systems. Soil Biol. Biochem. 35, 1693–1703. https://doi.org/10.1016/j.soilbio.2003.08.016 (2003).
Google Scholar
Dou, F., Wright, A. L., Mylavarapu, R. S., Jiang, X. & Matocha, J. E. Soil enzyme activities and organic matter composition affected by 26 years of continuous cropping. Pedosphere 25, 618–625. https://doi.org/10.1016/S1002-0160(15)60070-4 (2016).
Google Scholar
Błońska, E., Lasota, J. & Gruba, P. Enzymatic activity and stabilization of organic matter in soil with different detritus inputs. J. Soil Sci. Plant Nutr. 63, 242–247. https://doi.org/10.1080/00380768.2017.1326281 (2017).
Google Scholar
Shen, J. P., Zhang, L. M., Guo, J. F., Ray, J. L. & He, J. Z. Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Appl. Soil Ecol. 46, 119–124. https://doi.org/10.1016/j.apsoil.2010.06.015 (2010).
Google Scholar
Li, J. et al. Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil. J. Integr. Agric. 14, 2500–2511. https://doi.org/10.1016/S2095-3119(15)61229-1 (2015).
Google Scholar
Riggs, C. E. & Hobbie, S. E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biol. Biochem. 99, 54–65. https://doi.org/10.1016/j.soilbio.2016.04.023 (2016).
Google Scholar
Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x (2008).
Google Scholar
Kabata-Pendias, A. Trace Elements in Soils and Plants 4th Edn. https://doi.org/10.1201/b10158 (2010).
Verla, E. N., Verla, A. W., Osisi, A. F., Okeke, P. N. & Enyoh, C. E. Finding a relationship between mobility factors of selected heavy metals and soil particle size in soils from children’s playgrounds. Environ. Monit. Assess. 191, 1–11. https://doi.org/10.1007/s10661-019-7937-7 (2019).
Google Scholar
Maliszewska-Kordybach, B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Appl. Geochem. 11, 121–127. https://doi.org/10.1016/0883-2927(95)00076-3 (1996).
Google Scholar
Lu, Z., Zeng, F., Xue, N. & Li, F. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site. Sci. Total Environ. 433, 50–57. https://doi.org/10.1016/j.scitotenv.2012.06.036 (2012).
Google Scholar
Dearing, J. A. et al. Magnetic susceptibility of soil: An evaluation of conflicting theories using a national data set. Geophys. J. Int. 127, 728–734. https://doi.org/10.1111/j.1365-246X.1996.tb04051.x (1996).
Google Scholar
Hanesch, M. & Scholger, R. The influence of soil type on the magnetic susceptibility measured throughout soil profiles. Geophys. J. Int. 161, 50–56. https://doi.org/10.1111/j.1365-246X.2005.02577.x (2005).
Google Scholar
Blundell, A., Dearing, J. A., Boyle, J. F. & Hannam, J. A. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth-Sci. Rev. 95, 158–188. https://doi.org/10.1016/j.earscirev.2009.05.001 (2009).
Google Scholar
Alekseev, A., Alekseeva, T., Sokołowska, Z. & Hajnos, M. Magnetic and mineralogical properties of different granulometric fractions in the soils of the Lublin Upland Region. Int. Agrophys. 16, 1–6 (2001).
Quijano, L., Chaparro, M. A. E., Marié, D. C., Gaspar, L. & Navas, A. Relevant magnetic and soil parameters as potential indicators of soil conservation status of Mediterranean agroecosystems. Geophys. J. Int. 198, 1805–1817. https://doi.org/10.1093/gji/ggu239 (2014).
Google Scholar
Source: Ecology - nature.com