in

Soil texture as a key driver of polycyclic aromatic hydrocarbons (PAHs) distribution in forest topsoils

  • 1.

    Mahanty, B., Pakshirajan, K. & Dasu, V. V. Understanding the complexity and strategic evolution in PAH remediation research. Crit. Rev. Environ. Sci. Technol. 41, 1697–1746. https://doi.org/10.1080/10643389.2010.481586 (2011).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Meador, J. P. Polycyclic aromatic hydrocarbons. Encyclopedia of Ecology Vol. 4 (eds Jørgensen, S. E. & Fath, B. D.) 2881–2891 (Oxford: Elsevier, 2008).

  • 3.

    Gong, Z., Alef, K., Wilke, B. M. & Li, P. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation. J. Hazard Mater. 143, 372–378. https://doi.org/10.1016/j.jhazmat.2006.09.037 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Smith, M. J., Flowers, T. H., Duncan, H. J. & Alder, J. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ. Poll. 141, 519–525. https://doi.org/10.1016/j.envpol.2005.08.061 (2006).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Mackay, D., Shiu, W. Y. & Lee, S. C. Handbook of Physical–Chemical Properties and Environmental Fate for Organic Chemicals (CRC Press, 2006).

    Book 

    Google Scholar 

  • 6.

    Zhou, Q., Sun, F. & Liu, R. Joint chemical flushing of soils contaminated with petroleum hydrocarbons. Environ. Int. 31, 835–839. https://doi.org/10.1016/j.envint.2005.05.039 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 7.

    Wang, C. et al. Elemental carbon components and PAHs in soils from different areas of the Yangtze River Delta region, China and their relationship. CATENA 199, 105086. https://doi.org/10.1016/j.catena.2020.105086 (2021).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Hao, R., Wan, H. F., Song, Y. T., Jiang, H. & Peng, S. L. Polycyclic aromatic hydrocarbons in agricultural soils of the southern subtropics, China. Pedosphere 17, 673–680. https://doi.org/10.1016/S1002-0160(07)60081-2 (2007).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Dandie, C. E. et al. Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils. Chemosphere 81, 1061–1068. https://doi.org/10.1016/j.chemosphere.2010.09.059 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Liu, S. et al. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: Spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs). Chemosphere 82, 223–228. https://doi.org/10.1016/j.chemosphere.2010.10.017 (2011).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Terytze, K. et al. Detection and determination limits of priority organic pollutants in soil. Chemosphere 31, 3051–3083. https://doi.org/10.1016/0045-6535(95)00166-6 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Han, Y. M. et al. Stronger association of polycyclic aromatic hydrocarbons with soot than with char in soils and sediments. Chemosphere 119, 1335–1345. https://doi.org/10.1016/j.chemosphere.2014.02.021 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Duan, L. et al. Effect of ageing on benzo[a]pyrene extractability in contrasting soils. J. Hazard Mater. 296, 175–184. https://doi.org/10.1016/j.jhazmat.2015.04.050 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Luo, L., Zhang, S. & Ma, Y. Evaluation of impacts of soil fractions on phenanthrene sorption. Chemosphere 72, 891–896. https://doi.org/10.1016/j.chemosphere.2008.03.051 (2008).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Ukalska-Jaruga, A., Debaene, G. & Smreczak, B. Dissipation and sorption processes of polycyclic aromatic hydrocarbons (PAHs) to organic matter in soils amended by exogenous rich-carbon material. J. Soils Sediments 20, 836–849. https://doi.org/10.1007/s11368-019-02455-8 (2020).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Błońska, E., Lasota, J., Szuszkiewicz, M., Łukasik, A. & Klamerus-Iwan, A. Assessment of forest soil contamination in Krakow surroundings in relation to the type of stand. Environ. Earth Sci. 75, 1–15. https://doi.org/10.1007/s12665-016-6005-7 (2016).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Lasota, J. & Błońska, E. Polycyclic aromatic hydrocarbons content in contaminated forest soils with different humus types. Water Air Soil Poll. 229, 204. https://doi.org/10.1007/s11270-018-3857-3 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Pająk, M. et al. Restoration of vegetation in relation to soil properties of spoil heap heavily contaminated with heavy metals. Water Air Soil Poll. 229, 392. https://doi.org/10.1007/s11270-018-4040-6 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Lasota, J., Błońska, E., Łyszczarz, S. & Tibbett, M. Forest humus type governs heavy metal accumulation in specific organic matter fractions. Water Air Soil Poll. 231, 80. https://doi.org/10.1007/s11270-020-4450-0 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Pająk, M., Błońska, E., Frąc, M. & Oszust, K. Functional diversity and microbial activity of forest soils that are heavily contaminated by lead and zinc. Water Air Soil Poll. 227, 348. https://doi.org/10.1007/s11270-016-3051-4 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Chaudhary, P., Singh, S. B., Chaudhry, S. & Nain, L. Impact of PAH on biological health parameters of soils of an Indian refinery and adjoining agricultural area—A case study. Environ. Monit. Assess. 184, 1145–1156. https://doi.org/10.1007/s10661-011-2029-3 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Łukasik, A., Szuszkiewicz, M., Wanic, T. & Gruba, P. Three-dimensional model of magnetic susceptibility in forest topsoil: An indirect method to discriminate contaminant migration. Environ. Pollut. 273, 116491. https://doi.org/10.1016/j.envpol.2021.116491 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Magiera, T., Jabłońska, M., Strzyszcz, Z. & Rachwal, M. Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos. Environ. 45, 4281–4290. https://doi.org/10.1016/j.atmosenv.2011.04.076 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Hulett, L. D., Weinberger, A. J., Northcutt, K. J. & Ferguson, M. Chemical species in fly ash from coal-burning power plants. Science 210, 1356–1358. https://doi.org/10.1126/science.210.4476.1356 (1980).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Chaparro, M. A. E., Gogorza, C. S. G., Lavat, A., Pazos, S. & Sinito, A. M. Preliminary results of magnetic characterisation of different soils in the Tandil region (Argentina) affected by pollution by a metallurgical factory. Eur. J. Environ. Eng. Geophys. 7, 35–38 (2002).

    Google Scholar 

  • 26.

    Fabijańczyk, P., Zawadzki, J., Magiera, T. & Szuszkiewicz, M. A methodology of integration of magnetometric and geochemical soil contamination measurements. Geoderma 277, 51–60. https://doi.org/10.1016/j.geoderma.2016.05.009 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 27.

    Łukasik, A., Magiera, T., Lasota, J. & Błońska, E. Background value of magnetic susceptibility in forest topsoil: Assessment on the basis of studies conducted in forest preserves of Poland. Geoderma 264, 140–149. https://doi.org/10.1016/j.geoderma.2015.10.009 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Yu, X., Wang, Y. & Lu, S. Tracking the magnetic carriers of heavy metals in contaminated soils based on X-ray microprobe techniques and wavelet transformation. J. Hazard Mater. 381, 121114. https://doi.org/10.1016/j.jhazmat.2019.121114 (2020).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Jordanova, N., Jordanova, D. & Tsacheva, T. Application of magnetometry for delineation of anthropogenic pollution in areas covered by various soil types. Geoderma 144, 557–571. https://doi.org/10.1016/j.geoderma.2008.01.021 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Petrovský, E. et al. Magnetic mapping of distribution of wood ash used for fertilization of forest soil. Sci. Total Environ. 626, 228–234. https://doi.org/10.1016/j.scitotenv.2018.01.095 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Asgari, N., Ayoubi, S. & Demattê, J. A. M. Soil drainage assessment by magnetic susceptibility measures in western Iran. Geoderma Reg. 13, 35–42. https://doi.org/10.1016/j.geodrs.2018.03.003 (2018).

    Article 

    Google Scholar 

  • 32.

    Menshov, O. et al. Soil and dust magnetism in semi-urban area Truskavets, Ukraine. Environ. Earth Sci. 79, 1–10. https://doi.org/10.1007/s12665-020-08924-5 (2020).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Xu, S. et al. Contents of heavy metals and PAHs and their relationships with magnetic susceptibility in soils of vegetable base in Fuzhou City. Chin. J. Environ. Eng. 11, 4861–4867. https://doi.org/10.12030/j.cjee.201607118 (2017).

    Article 

    Google Scholar 

  • 34.

    IUSS Working Group WRB. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. https://doi.org/10.1017/S0014479706394902 (2014).

  • 35.

    Sanaullah, M., Razavi, B. S., Blagodatskaya, E. & Kuzyakov, Y. Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface. Biol. Fertil. Soils 52, 505–514. https://doi.org/10.1007/s00374-016-1094-8 (2016).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Pritsch, K. et al. A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J. Microb. Met. 58, 233–241. https://doi.org/10.1016/j.mimet.2004.04.001 (2004).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Turner, B. L. Variation in ph optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microbiol. 76, 6485–6493. https://doi.org/10.1128/AEM.00560-10 (2010).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Jenkinson, D. S. & Powlson, D. S. The effects of biocidal treatments on metabolism in soil-I. Fumigation with chloroform. Soil Biol. Biochem. 8, 167–177. https://doi.org/10.1016/0038-0717(76)90001-8 (1976).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6 (1987).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Dearing, J. A. Environmental Magnetic Susceptibility. Using the Bartington MS2 System 2nd edn. (Chi Publishing, 1999).

    Google Scholar 

  • 41.

    Quenea, K., Lamy, I., Winterton, P., Bermond, A. & Dumat, C. Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 1, 217–223. https://doi.org/10.1016/j.geoderma.2008.11.037 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 42.

    Yu, H., Xiao, H. & Wang, D. Effects of soil properties and biosurfactant on the behavior of PAHs in soil-water systems. Environ. Syst. Res. 3, 6. https://doi.org/10.1186/2193-2697-3-6 (2014).

    Article 

    Google Scholar 

  • 43.

    Singh, S. K. & Haritash, A. K. Polycyclic aromatic hydrocarbons: Soil pollution and remediation. Inter. J. Environ. Sci. Technol. 16, 6489–6512. https://doi.org/10.1007/s13762-019-02414-3 (2019).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Banach-Szott, M., Debska, B., Wisniewska, A. & Pakula, J. Changes in the contents of selected polycyclic aromatic hydrocarbons in soils of various types. Environ. Sci. Pollut. Res. 22, 5059–5069. https://doi.org/10.1007/s11356-014-3901-9 (2015).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Han, B., Ding, X., Bai, Z., Kong, S. & Guo, G. Source analysis of particulate matter associated polycyclic aromatic hydrocarbons (PAHs) in an industrial city in northeastern China. J. Environ. Monit. 13, 2597–2604. https://doi.org/10.1039/c1em10251f (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Srogi, K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 5, 169–195. https://doi.org/10.1007/s10311-007-0095-0 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Fu, G., Kan, A. T. & Tomson, M. Adsorption and desorption hysteresis of pahs in surface sediment. Environ. Toxicol. Chem. 13, 1559–1567. https://doi.org/10.1002/etc.5620131003 (1994).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Maliszewska-Kordybach, B. & Smreczak, B. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ. Inter. 28, 719–728. https://doi.org/10.1016/S0160-4120(02)00117-4 (2003).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Baran, S., Bielińska, J. E. & Oleszczuk, P. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma 118, 221–232. https://doi.org/10.1016/S0016-7061(03)00205-2 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 50.

    Wang, C., Sun, H., Li, J., Li, Y. & Zhang, Q. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere 77, 733–738. https://doi.org/10.1016/j.chemosphere.2009.08.028 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Feng, Y. et al. Soil microbial communities under conventional-till and no-till continuous cotton systems. Soil Biol. Biochem. 35, 1693–1703. https://doi.org/10.1016/j.soilbio.2003.08.016 (2003).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Dou, F., Wright, A. L., Mylavarapu, R. S., Jiang, X. & Matocha, J. E. Soil enzyme activities and organic matter composition affected by 26 years of continuous cropping. Pedosphere 25, 618–625. https://doi.org/10.1016/S1002-0160(15)60070-4 (2016).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Błońska, E., Lasota, J. & Gruba, P. Enzymatic activity and stabilization of organic matter in soil with different detritus inputs. J. Soil Sci. Plant Nutr. 63, 242–247. https://doi.org/10.1080/00380768.2017.1326281 (2017).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Shen, J. P., Zhang, L. M., Guo, J. F., Ray, J. L. & He, J. Z. Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Appl. Soil Ecol. 46, 119–124. https://doi.org/10.1016/j.apsoil.2010.06.015 (2010).

    Article 

    Google Scholar 

  • 55.

    Li, J. et al. Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil. J. Integr. Agric. 14, 2500–2511. https://doi.org/10.1016/S2095-3119(15)61229-1 (2015).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Riggs, C. E. & Hobbie, S. E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biol. Biochem. 99, 54–65. https://doi.org/10.1016/j.soilbio.2016.04.023 (2016).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x (2008).

    Article 
    PubMed 

    Google Scholar 

  • 58.

    Kabata-Pendias, A. Trace Elements in Soils and Plants 4th Edn. https://doi.org/10.1201/b10158 (2010).

  • 59.

    Verla, E. N., Verla, A. W., Osisi, A. F., Okeke, P. N. & Enyoh, C. E. Finding a relationship between mobility factors of selected heavy metals and soil particle size in soils from children’s playgrounds. Environ. Monit. Assess. 191, 1–11. https://doi.org/10.1007/s10661-019-7937-7 (2019).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Maliszewska-Kordybach, B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Appl. Geochem. 11, 121–127. https://doi.org/10.1016/0883-2927(95)00076-3 (1996).

    Article 

    Google Scholar 

  • 61.

    Lu, Z., Zeng, F., Xue, N. & Li, F. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site. Sci. Total Environ. 433, 50–57. https://doi.org/10.1016/j.scitotenv.2012.06.036 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 62.

    Dearing, J. A. et al. Magnetic susceptibility of soil: An evaluation of conflicting theories using a national data set. Geophys. J. Int. 127, 728–734. https://doi.org/10.1111/j.1365-246X.1996.tb04051.x (1996).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Hanesch, M. & Scholger, R. The influence of soil type on the magnetic susceptibility measured throughout soil profiles. Geophys. J. Int. 161, 50–56. https://doi.org/10.1111/j.1365-246X.2005.02577.x (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 64.

    Blundell, A., Dearing, J. A., Boyle, J. F. & Hannam, J. A. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth-Sci. Rev. 95, 158–188. https://doi.org/10.1016/j.earscirev.2009.05.001 (2009).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Alekseev, A., Alekseeva, T., Sokołowska, Z. & Hajnos, M. Magnetic and mineralogical properties of different granulometric fractions in the soils of the Lublin Upland Region. Int. Agrophys. 16, 1–6 (2001).

    Google Scholar 

  • 66.

    Quijano, L., Chaparro, M. A. E., Marié, D. C., Gaspar, L. & Navas, A. Relevant magnetic and soil parameters as potential indicators of soil conservation status of Mediterranean agroecosystems. Geophys. J. Int. 198, 1805–1817. https://doi.org/10.1093/gji/ggu239 (2014).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT.nano receives American Institute of Architects’s Top Ten Award for sustainable design

    Push to make supply chains more sustainable continues to gain momentum