Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–383 (2011).
Google Scholar
Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).
Google Scholar
WWF. Living planet report 2020 – bending the curve of biodiversity loss. (WWF, Gland, Switzerland, 2020).
Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978. https://doi.org/10.1038/s41467-020-19493-3 (2020).
Google Scholar
Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855. https://doi.org/10.1126/science.1259855 (2015).
Google Scholar
Balmford, A. et al. Economic reasons for conserving wild nature. Science 297, 950–953 (2002).
Google Scholar
Hockings, M. Systems for assessing the effectiveness of management in protected areas. Bioscience 53, 823–832. https://doi.org/10.1641/0006-3568(2003)053[0823:Sfateo]2.0.Co;2 (2003).
Google Scholar
Reboredo Segovia, A. L., Romano, D. & Armsworth, P. R. Who studies where? Boosting tropical conservation research where it is most needed. Front. Ecol. Environ. 18, 159–166. https://doi.org/10.1002/fee.2146 (2020).
Google Scholar
Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238. https://doi.org/10.1016/j.biocon.2013.02.018 (2013).
Google Scholar
Heino, M. et al. Forest loss in protected areas and intact forest landscapes: A global analysis. PLoS ONE 10, e0138918. https://doi.org/10.1371/journal.pone.0138918 (2015).
Google Scholar
Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS ONE 4, e8273. https://doi.org/10.1371/journal.pone.0008273 (2009).
Google Scholar
Ferraro, P. et al. More strictly protected areas are not necessarily more protective: Evidence from bolivia, costa rica, indonesia, and thailand. Environ. Res. Lett. 8, 025011 (2013).
Google Scholar
Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. London B Biol. Sci. 278, 1633–1638 (2011).
Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. 116, 23209–23215. https://doi.org/10.1073/pnas.1908221116 (2019).
Google Scholar
Allan, J. R. et al. Recent increases in human pressure and forest loss threaten many natural world heritage sites. Biol. Conserv. 206, 47–55. https://doi.org/10.1016/j.biocon.2016.12.011 (2017).
Google Scholar
Watson, J., Edward, M. & Venter, O. Mapping the continuum of humanity’s footprint on land. One Earth 1, 175–180. https://doi.org/10.1016/j.oneear.2019.09.004 (2019).
Google Scholar
Joppa, L. & Pfaff, A. Reassessing the forest impacts of protection. Ann. N. Y. Acad. Sci. 1185, 135–149. https://doi.org/10.1111/j.1749-6632.2009.05162.x (2010).
Google Scholar
Gaveau, D. L. A. et al. Evaluating whether protected areas reduce tropical deforestation in sumatra. J. Biogeogr. 36, 2165–2175. https://doi.org/10.1111/j.1365-2699.2009.02147.x (2009).
Google Scholar
Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. 105, 16089–16094. https://doi.org/10.1073/pnas.0800437105 (2008).
Google Scholar
Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. https://doi.org/10.1126/sciadv.1600821 (2017).
Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554. https://doi.org/10.1111/gcb.12605 (2014).
Google Scholar
Hughes, A. C. Understanding the drivers of southeast asian biodiversity loss. Ecosphere 8, e01624. https://doi.org/10.1002/ecs2.1624 (2017).
Google Scholar
Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast asian biodiversity: An impending disaster. Trends Ecol. Evol. 19, 654–660. https://doi.org/10.1016/j.tree.2004.09.006 (2004).
Google Scholar
Estoque, R. C. et al. The future of southeast asia’s forests. Nat. Commun. 10, 1829–1829. https://doi.org/10.1038/s41467-019-09646-4 (2019).
Google Scholar
Stolton, S. et al. Reporting Progress in Protected Areas a Site Level Management Effectiveness Tracking Tool (Gland, 2007).
Coad, L. et al. Measuring impact of protected area management interventions: Current and future use of the global database of protected area management effectiveness. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140281. https://doi.org/10.1098/rstb.2014.0281 (2015).
Google Scholar
CBD. Cop 10 decision x/2: Strategic Plan for Biodiversity 2011–2020 (Convention on Biological Diversity, 2011).
UNFCCC. Adoption of the Paris Agreement (Proposal by the President Draft Decision -/CP.21, 2015).
Gaveau, D. L. A. et al. Four Decades of Forest Persistence, Clearance and Logging on Borneo. Vol. 9 (2014).
Bebber, D. P. & Butt, N. Tropical protected areas reduced deforestation carbon emissions by one third from 2000–2012. Sci. Rep. 7, 14005. https://doi.org/10.1038/s41598-017-14467-w (2017).
Google Scholar
Buřivalová, Z., Hart, S. J., Radeloff, V. C. & Srinivasan, U. Early warning sign of forest loss in protected areas. Curr. Biol. https://doi.org/10.1016/j.cub.2021.07.072 (2021).
Google Scholar
Apan, A., Suarez, L. A., Maraseni, T. & Castillo, J. A. The rate, extent and spatial predictors of forest loss (2000–2012) in the terrestrial protected areas of the philippines. Appl. Geogr. 81, 32–42. https://doi.org/10.1016/j.apgeog.2017.02.007 (2017).
Google Scholar
Graham, V., Nurhidayah, L. & Astuti, R. Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2019).
Graham, V., Laurance, S. G., Grech, A., McGregor, A. & Venter, O. A comparative assessment of the financial costs and carbon benefits of redd+ strategies in southeast asia. Environ. Res. Lett. 11, 114022. https://doi.org/10.1088/1748-9326/11/11/114022 (2016).
Google Scholar
Mascia, M. B. et al. Protected area downgrading, downsizing, and degazettement (paddd) in africa, asia, and latin america and the caribbean, 1900–2010. Biol. Conserv. 169, 355–361. https://doi.org/10.1016/j.biocon.2013.11.021 (2014).
Google Scholar
Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv Lett 11, e12434 (2018).
Google Scholar
Graham, V. et al. Management resourcing and government transparency are key drivers of biodiversity outcomes in southeast asian protected areas. Biol. Conserv. 253, 108875. https://doi.org/10.1016/j.biocon.2020.108875 (2021).
Google Scholar
Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665 (2017).
Google Scholar
Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front Ecol Environ 17, 259–264. https://doi.org/10.1002/fee.2042 (2019).
Google Scholar
Carranza, T., Manica, A., Kapos, V. & Balmford, A. Mismatches between conservation outcomes and management evaluation in protected areas: A case study in the brazilian cerrado. Biol. Conserv. 173, 10–16. https://doi.org/10.1016/j.biocon.2014.03.004 (2014).
Google Scholar
Nolte, C. & Agrawal, A. Linking management effectiveness indicators to observed effects of protected areas on fire occurrence in the amazon rainforest. Conserv. Biol. 27, 155–165. https://doi.org/10.1111/j.1523-1739.2012.01930.x (2013).
Google Scholar
Nolte, C., Agrawal, A. & Barreto, P. Setting priorities to avoid deforestation in amazon protected areas: Are we choosing the right indicators?. Environ. Res. Lett. 8, 015039. https://doi.org/10.1088/1748-9326/8/1/015039 (2013).
Google Scholar
Eklund, J., Coad, L., Geldmann, J. & Cabeza, M. What constitutes a useful measure of protected area effectiveness? A case study of management inputs and protected area impacts in madagascar. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.107 (2019).
Google Scholar
Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108. https://doi.org/10.1016/j.biocon.2016.10.006 (2017).
Google Scholar
Schleicher, J., Peres, C. A. & Leader-Williams, N. Conservation performance of tropical protected areas: How important is management?. Conserv. Lett. https://doi.org/10.1111/conl.12650 (2019).
Google Scholar
Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).
Google Scholar
Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of amazon indigenous territories and protected areas. Proc. Natl. Acad. Sci. 117, 3015–3025. https://doi.org/10.1073/pnas.1913321117 (2020).
Google Scholar
Wolosin, M. & Harris, N. Tropical Forests and Climate Change: The Latest Science (World Resources Institute, 2018).
Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645–11650. https://doi.org/10.1073/pnas.1710465114 (2017).
Google Scholar
Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. https://doi.org/10.1111/cobi.13448 (2019).
Google Scholar
Rights and Resources Initiative. Who owns the world’s land? A global baseline of formally recognized Indigenous and community land rights. (Rights and Resources Initiative, Washington DC, 2015).
Santika, T. et al. Community forest management in indonesia: Avoided deforestation in the context of anthropogenic and climate complexities. Glob. Environ. Chang. 46, 60–71. https://doi.org/10.1016/j.gloenvcha.2017.08.002 (2017).
Google Scholar
Dudley, N., Shadie, P. & Stolton, S. Guidelines for Applying Protected Area Management Categories Including IUCN WCPA Best Practice Guidance on Recognising Protected Areas and Assigning Management Categories and Governance Types. (IUCN, 2013).
Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. Multiple use protected areas in reducing tropical forest fires: A global analysis using matching methods. PLoS ONE 6, e22722, https://doi.org/10.1371/journal.pone.0022722 (2011).
Ferraro, P. J., Hanauer, M. M. & Sims, K. R. E. Conditions associated with protected area success in conservation and poverty reduction. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1011529108 (2011).
Google Scholar
Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30, 133–141. https://doi.org/10.1111/cobi.12568 (2016).
Google Scholar
Buchner, B. et al. The Global Landscape of Climate Finance 2015 (Climate Policy Initiative, 2015).
Climate Focus. Progress on the New York Declaration on Forests: Finance for Forests (Climate Focus, 2017).
Scharlemann, J. P. W. et al. Securing tropical forest carbon: The contribution of protected areas to redd. Oryx 44, 352–357 (2010).
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).
Google Scholar
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111. https://doi.org/10.1126/science.aau3445 (2018).
Google Scholar
Zarin, D. J. et al. Tree Biomass Loss: CO2 Emissions from Aboveground Woody Biomass Loss in the Tropics. www.globalforestwatch.org (2020).
Coad, L. et al. Measuring impact of protected area management interventions: Current and future use of the global database of protected area management effectiveness. Philos. Trans. R. Soc. London B Biol. Sci. 370 (2015).
Ho, D., Imai, K., King, G. & Stuart, E. Matchit: Nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42 (2011).
Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009. https://doi.org/10.1088/1748-9326/7/4/044009 (2012).
Google Scholar
Ewers, R. M. & Rodrigues, A. S. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 23, 113–116 (2008).
Google Scholar
Oliveira, P. J. et al. Land-use allocation protects the peruvian amazon. Science 317, 1233–1236 (2007).
Google Scholar
Negret, P. J. et al. Effects of spatial autocorrelation and sampling design on estimates of protected area effectiveness. Conserv. Biol. 34, 1452–1462. https://doi.org/10.1111/cobi.13522 (2020).
Google Scholar
Miettinen, J., Shi, C., Tan, W. J. & Liew, S. C. 2010 land cover map of insular southeast asia in 250-m spatial resolution. Remote Sens. Lett. 3, 11–20. https://doi.org/10.1080/01431161.2010.526971 (2012).
Google Scholar
Stuart, E., Rubin, D. & Osborne, J. Best Practices in Quantitative Methods (Sage Publications, 2007).
Barton, K. & Barton, M. K. Package ‘mumin’. Version 1, 18 (2015).
Source: Ecology - nature.com