in

Southeast Asian protected areas are effective in conserving forest cover and forest carbon stocks compared to unprotected areas

  • 1.

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–383 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    WWF. Living planet report 2020 – bending the curve of biodiversity loss. (WWF, Gland, Switzerland, 2020).

  • 4.

    Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978. https://doi.org/10.1038/s41467-020-19493-3 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855. https://doi.org/10.1126/science.1259855 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Balmford, A. et al. Economic reasons for conserving wild nature. Science 297, 950–953 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Hockings, M. Systems for assessing the effectiveness of management in protected areas. Bioscience 53, 823–832. https://doi.org/10.1641/0006-3568(2003)053[0823:Sfateo]2.0.Co;2 (2003).

    Article 

    Google Scholar 

  • 8.

    Reboredo Segovia, A. L., Romano, D. & Armsworth, P. R. Who studies where? Boosting tropical conservation research where it is most needed. Front. Ecol. Environ. 18, 159–166. https://doi.org/10.1002/fee.2146 (2020).

    Article 

    Google Scholar 

  • 9.

    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238. https://doi.org/10.1016/j.biocon.2013.02.018 (2013).

    Article 

    Google Scholar 

  • 10.

    Heino, M. et al. Forest loss in protected areas and intact forest landscapes: A global analysis. PLoS ONE 10, e0138918. https://doi.org/10.1371/journal.pone.0138918 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS ONE 4, e8273. https://doi.org/10.1371/journal.pone.0008273 (2009).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Ferraro, P. et al. More strictly protected areas are not necessarily more protective: Evidence from bolivia, costa rica, indonesia, and thailand. Environ. Res. Lett. 8, 025011 (2013).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. London B Biol. Sci. 278, 1633–1638 (2011).

    Google Scholar 

  • 14.

    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. 116, 23209–23215. https://doi.org/10.1073/pnas.1908221116 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Allan, J. R. et al. Recent increases in human pressure and forest loss threaten many natural world heritage sites. Biol. Conserv. 206, 47–55. https://doi.org/10.1016/j.biocon.2016.12.011 (2017).

    Article 

    Google Scholar 

  • 16.

    Watson, J., Edward, M. & Venter, O. Mapping the continuum of humanity’s footprint on land. One Earth 1, 175–180. https://doi.org/10.1016/j.oneear.2019.09.004 (2019).

    Article 

    Google Scholar 

  • 17.

    Joppa, L. & Pfaff, A. Reassessing the forest impacts of protection. Ann. N. Y. Acad. Sci. 1185, 135–149. https://doi.org/10.1111/j.1749-6632.2009.05162.x (2010).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Gaveau, D. L. A. et al. Evaluating whether protected areas reduce tropical deforestation in sumatra. J. Biogeogr. 36, 2165–2175. https://doi.org/10.1111/j.1365-2699.2009.02147.x (2009).

    Article 

    Google Scholar 

  • 19.

    Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. 105, 16089–16094. https://doi.org/10.1073/pnas.0800437105 (2008).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. https://doi.org/10.1126/sciadv.1600821 (2017).

  • 21.

    Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554. https://doi.org/10.1111/gcb.12605 (2014).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Hughes, A. C. Understanding the drivers of southeast asian biodiversity loss. Ecosphere 8, e01624. https://doi.org/10.1002/ecs2.1624 (2017).

    Article 

    Google Scholar 

  • 23.

    Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast asian biodiversity: An impending disaster. Trends Ecol. Evol. 19, 654–660. https://doi.org/10.1016/j.tree.2004.09.006 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Estoque, R. C. et al. The future of southeast asia’s forests. Nat. Commun. 10, 1829–1829. https://doi.org/10.1038/s41467-019-09646-4 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Stolton, S. et al. Reporting Progress in Protected Areas a Site Level Management Effectiveness Tracking Tool (Gland, 2007).

    Google Scholar 

  • 26.

    Coad, L. et al. Measuring impact of protected area management interventions: Current and future use of the global database of protected area management effectiveness. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140281. https://doi.org/10.1098/rstb.2014.0281 (2015).

    Article 

    Google Scholar 

  • 27.

    CBD. Cop 10 decision x/2: Strategic Plan for Biodiversity 2011–2020 (Convention on Biological Diversity, 2011).

  • 28.

    UNFCCC. Adoption of the Paris Agreement (Proposal by the President Draft Decision -/CP.21, 2015).

  • 29.

    Gaveau, D. L. A. et al. Four Decades of Forest Persistence, Clearance and Logging on Borneo. Vol. 9 (2014).

  • 30.

    Bebber, D. P. & Butt, N. Tropical protected areas reduced deforestation carbon emissions by one third from 2000–2012. Sci. Rep. 7, 14005. https://doi.org/10.1038/s41598-017-14467-w (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Buřivalová, Z., Hart, S. J., Radeloff, V. C. & Srinivasan, U. Early warning sign of forest loss in protected areas. Curr. Biol. https://doi.org/10.1016/j.cub.2021.07.072 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 32.

    Apan, A., Suarez, L. A., Maraseni, T. & Castillo, J. A. The rate, extent and spatial predictors of forest loss (2000–2012) in the terrestrial protected areas of the philippines. Appl. Geogr. 81, 32–42. https://doi.org/10.1016/j.apgeog.2017.02.007 (2017).

    Article 

    Google Scholar 

  • 33.

    Graham, V., Nurhidayah, L. & Astuti, R. Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2019).

    Google Scholar 

  • 34.

    Graham, V., Laurance, S. G., Grech, A., McGregor, A. & Venter, O. A comparative assessment of the financial costs and carbon benefits of redd+ strategies in southeast asia. Environ. Res. Lett. 11, 114022. https://doi.org/10.1088/1748-9326/11/11/114022 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Mascia, M. B. et al. Protected area downgrading, downsizing, and degazettement (paddd) in africa, asia, and latin america and the caribbean, 1900–2010. Biol. Conserv. 169, 355–361. https://doi.org/10.1016/j.biocon.2013.11.021 (2014).

    Article 

    Google Scholar 

  • 36.

    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv Lett 11, e12434 (2018).

    Article 

    Google Scholar 

  • 37.

    Graham, V. et al. Management resourcing and government transparency are key drivers of biodiversity outcomes in southeast asian protected areas. Biol. Conserv. 253, 108875. https://doi.org/10.1016/j.biocon.2020.108875 (2021).

    Article 

    Google Scholar 

  • 38.

    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front Ecol Environ 17, 259–264. https://doi.org/10.1002/fee.2042 (2019).

    Article 

    Google Scholar 

  • 40.

    Carranza, T., Manica, A., Kapos, V. & Balmford, A. Mismatches between conservation outcomes and management evaluation in protected areas: A case study in the brazilian cerrado. Biol. Conserv. 173, 10–16. https://doi.org/10.1016/j.biocon.2014.03.004 (2014).

    Article 

    Google Scholar 

  • 41.

    Nolte, C. & Agrawal, A. Linking management effectiveness indicators to observed effects of protected areas on fire occurrence in the amazon rainforest. Conserv. Biol. 27, 155–165. https://doi.org/10.1111/j.1523-1739.2012.01930.x (2013).

    Article 
    PubMed 

    Google Scholar 

  • 42.

    Nolte, C., Agrawal, A. & Barreto, P. Setting priorities to avoid deforestation in amazon protected areas: Are we choosing the right indicators?. Environ. Res. Lett. 8, 015039. https://doi.org/10.1088/1748-9326/8/1/015039 (2013).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Eklund, J., Coad, L., Geldmann, J. & Cabeza, M. What constitutes a useful measure of protected area effectiveness? A case study of management inputs and protected area impacts in madagascar. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.107 (2019).

    Article 

    Google Scholar 

  • 44.

    Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108. https://doi.org/10.1016/j.biocon.2016.10.006 (2017).

    Article 

    Google Scholar 

  • 45.

    Schleicher, J., Peres, C. A. & Leader-Williams, N. Conservation performance of tropical protected areas: How important is management?. Conserv. Lett. https://doi.org/10.1111/conl.12650 (2019).

    Article 

    Google Scholar 

  • 46.

    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 47.

    Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of amazon indigenous territories and protected areas. Proc. Natl. Acad. Sci. 117, 3015–3025. https://doi.org/10.1073/pnas.1913321117 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Wolosin, M. & Harris, N. Tropical Forests and Climate Change: The Latest Science (World Resources Institute, 2018).

    Google Scholar 

  • 49.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645–11650. https://doi.org/10.1073/pnas.1710465114 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. https://doi.org/10.1111/cobi.13448 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Rights and Resources Initiative. Who owns the world’s land? A global baseline of formally recognized Indigenous and community land rights. (Rights and Resources Initiative, Washington DC, 2015).

  • 52.

    Santika, T. et al. Community forest management in indonesia: Avoided deforestation in the context of anthropogenic and climate complexities. Glob. Environ. Chang. 46, 60–71. https://doi.org/10.1016/j.gloenvcha.2017.08.002 (2017).

    Article 

    Google Scholar 

  • 53.

    Dudley, N., Shadie, P. & Stolton, S. Guidelines for Applying Protected Area Management Categories Including IUCN WCPA Best Practice Guidance on Recognising Protected Areas and Assigning Management Categories and Governance Types. (IUCN, 2013).

    Google Scholar 

  • 54.

    Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. Multiple use protected areas in reducing tropical forest fires: A global analysis using matching methods. PLoS ONE 6, e22722, https://doi.org/10.1371/journal.pone.0022722 (2011).

  • 55.

    Ferraro, P. J., Hanauer, M. M. & Sims, K. R. E. Conditions associated with protected area success in conservation and poverty reduction. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1011529108 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30, 133–141. https://doi.org/10.1111/cobi.12568 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Buchner, B. et al. The Global Landscape of Climate Finance 2015 (Climate Policy Initiative, 2015).

    Google Scholar 

  • 58.

    Climate Focus. Progress on the New York Declaration on Forests: Finance for Forests (Climate Focus, 2017).

    Google Scholar 

  • 59.

    Scharlemann, J. P. W. et al. Securing tropical forest carbon: The contribution of protected areas to redd. Oryx 44, 352–357 (2010).

    Article 

    Google Scholar 

  • 60.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 61.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111. https://doi.org/10.1126/science.aau3445 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 62.

    Zarin, D. J. et al. Tree Biomass Loss: CO2 Emissions from Aboveground Woody Biomass Loss in the Tropics. www.globalforestwatch.org (2020).

  • 63.

    Coad, L. et al. Measuring impact of protected area management interventions: Current and future use of the global database of protected area management effectiveness. Philos. Trans. R. Soc. London B Biol. Sci. 370 (2015).

  • 64.

    Ho, D., Imai, K., King, G. & Stuart, E. Matchit: Nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42 (2011).

  • 65.

    Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009. https://doi.org/10.1088/1748-9326/7/4/044009 (2012).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Ewers, R. M. & Rodrigues, A. S. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 23, 113–116 (2008).

    Article 

    Google Scholar 

  • 67.

    Oliveira, P. J. et al. Land-use allocation protects the peruvian amazon. Science 317, 1233–1236 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 68.

    Negret, P. J. et al. Effects of spatial autocorrelation and sampling design on estimates of protected area effectiveness. Conserv. Biol. 34, 1452–1462. https://doi.org/10.1111/cobi.13522 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Miettinen, J., Shi, C., Tan, W. J. & Liew, S. C. 2010 land cover map of insular southeast asia in 250-m spatial resolution. Remote Sens. Lett. 3, 11–20. https://doi.org/10.1080/01431161.2010.526971 (2012).

    Article 

    Google Scholar 

  • 70.

    Stuart, E., Rubin, D. & Osborne, J. Best Practices in Quantitative Methods (Sage Publications, 2007).

    Google Scholar 

  • 71.

    Barton, K. & Barton, M. K. Package ‘mumin’. Version 1, 18 (2015).

    Google Scholar 

  • The size and shape of parasitic larvae of naiads (Unionidae) are not dependent on female size

    Protozoa populations are ecosystem engineers that shape prokaryotic community structure and function of the rumen microbial ecosystem