in

Southeast Asian protected areas are effective in conserving forest cover and forest carbon stocks compared to unprotected areas

  • 1.

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–383 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    WWF. Living planet report 2020 – bending the curve of biodiversity loss. (WWF, Gland, Switzerland, 2020).

  • 4.

    Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978. https://doi.org/10.1038/s41467-020-19493-3 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855. https://doi.org/10.1126/science.1259855 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Balmford, A. et al. Economic reasons for conserving wild nature. Science 297, 950–953 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Hockings, M. Systems for assessing the effectiveness of management in protected areas. Bioscience 53, 823–832. https://doi.org/10.1641/0006-3568(2003)053[0823:Sfateo]2.0.Co;2 (2003).

    Article 

    Google Scholar 

  • 8.

    Reboredo Segovia, A. L., Romano, D. & Armsworth, P. R. Who studies where? Boosting tropical conservation research where it is most needed. Front. Ecol. Environ. 18, 159–166. https://doi.org/10.1002/fee.2146 (2020).

    Article 

    Google Scholar 

  • 9.

    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238. https://doi.org/10.1016/j.biocon.2013.02.018 (2013).

    Article 

    Google Scholar 

  • 10.

    Heino, M. et al. Forest loss in protected areas and intact forest landscapes: A global analysis. PLoS ONE 10, e0138918. https://doi.org/10.1371/journal.pone.0138918 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS ONE 4, e8273. https://doi.org/10.1371/journal.pone.0008273 (2009).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Ferraro, P. et al. More strictly protected areas are not necessarily more protective: Evidence from bolivia, costa rica, indonesia, and thailand. Environ. Res. Lett. 8, 025011 (2013).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. London B Biol. Sci. 278, 1633–1638 (2011).

    Google Scholar 

  • 14.

    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. 116, 23209–23215. https://doi.org/10.1073/pnas.1908221116 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Allan, J. R. et al. Recent increases in human pressure and forest loss threaten many natural world heritage sites. Biol. Conserv. 206, 47–55. https://doi.org/10.1016/j.biocon.2016.12.011 (2017).

    Article 

    Google Scholar 

  • 16.

    Watson, J., Edward, M. & Venter, O. Mapping the continuum of humanity’s footprint on land. One Earth 1, 175–180. https://doi.org/10.1016/j.oneear.2019.09.004 (2019).

    Article 

    Google Scholar 

  • 17.

    Joppa, L. & Pfaff, A. Reassessing the forest impacts of protection. Ann. N. Y. Acad. Sci. 1185, 135–149. https://doi.org/10.1111/j.1749-6632.2009.05162.x (2010).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Gaveau, D. L. A. et al. Evaluating whether protected areas reduce tropical deforestation in sumatra. J. Biogeogr. 36, 2165–2175. https://doi.org/10.1111/j.1365-2699.2009.02147.x (2009).

    Article 

    Google Scholar 

  • 19.

    Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. 105, 16089–16094. https://doi.org/10.1073/pnas.0800437105 (2008).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. https://doi.org/10.1126/sciadv.1600821 (2017).

  • 21.

    Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554. https://doi.org/10.1111/gcb.12605 (2014).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Hughes, A. C. Understanding the drivers of southeast asian biodiversity loss. Ecosphere 8, e01624. https://doi.org/10.1002/ecs2.1624 (2017).

    Article 

    Google Scholar 

  • 23.

    Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast asian biodiversity: An impending disaster. Trends Ecol. Evol. 19, 654–660. https://doi.org/10.1016/j.tree.2004.09.006 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Estoque, R. C. et al. The future of southeast asia’s forests. Nat. Commun. 10, 1829–1829. https://doi.org/10.1038/s41467-019-09646-4 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Stolton, S. et al. Reporting Progress in Protected Areas a Site Level Management Effectiveness Tracking Tool (Gland, 2007).

    Google Scholar 

  • 26.

    Coad, L. et al. Measuring impact of protected area management interventions: Current and future use of the global database of protected area management effectiveness. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140281. https://doi.org/10.1098/rstb.2014.0281 (2015).

    Article 

    Google Scholar 

  • 27.

    CBD. Cop 10 decision x/2: Strategic Plan for Biodiversity 2011–2020 (Convention on Biological Diversity, 2011).

  • 28.

    UNFCCC. Adoption of the Paris Agreement (Proposal by the President Draft Decision -/CP.21, 2015).

  • 29.

    Gaveau, D. L. A. et al. Four Decades of Forest Persistence, Clearance and Logging on Borneo. Vol. 9 (2014).

  • 30.

    Bebber, D. P. & Butt, N. Tropical protected areas reduced deforestation carbon emissions by one third from 2000–2012. Sci. Rep. 7, 14005. https://doi.org/10.1038/s41598-017-14467-w (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Buřivalová, Z., Hart, S. J., Radeloff, V. C. & Srinivasan, U. Early warning sign of forest loss in protected areas. Curr. Biol. https://doi.org/10.1016/j.cub.2021.07.072 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 32.

    Apan, A., Suarez, L. A., Maraseni, T. & Castillo, J. A. The rate, extent and spatial predictors of forest loss (2000–2012) in the terrestrial protected areas of the philippines. Appl. Geogr. 81, 32–42. https://doi.org/10.1016/j.apgeog.2017.02.007 (2017).

    Article 

    Google Scholar 

  • 33.

    Graham, V., Nurhidayah, L. & Astuti, R. Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2019).

    Google Scholar 

  • 34.

    Graham, V., Laurance, S. G., Grech, A., McGregor, A. & Venter, O. A comparative assessment of the financial costs and carbon benefits of redd+ strategies in southeast asia. Environ. Res. Lett. 11, 114022. https://doi.org/10.1088/1748-9326/11/11/114022 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Mascia, M. B. et al. Protected area downgrading, downsizing, and degazettement (paddd) in africa, asia, and latin america and the caribbean, 1900–2010. Biol. Conserv. 169, 355–361. https://doi.org/10.1016/j.biocon.2013.11.021 (2014).

    Article 

    Google Scholar 

  • 36.

    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv Lett 11, e12434 (2018).

    Article 

    Google Scholar 

  • 37.

    Graham, V. et al. Management resourcing and government transparency are key drivers of biodiversity outcomes in southeast asian protected areas. Biol. Conserv. 253, 108875. https://doi.org/10.1016/j.biocon.2020.108875 (2021).

    Article 

    Google Scholar 

  • 38.

    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front Ecol Environ 17, 259–264. https://doi.org/10.1002/fee.2042 (2019).

    Article 

    Google Scholar 

  • 40.

    Carranza, T., Manica, A., Kapos, V. & Balmford, A. Mismatches between conservation outcomes and management evaluation in protected areas: A case study in the brazilian cerrado. Biol. Conserv. 173, 10–16. https://doi.org/10.1016/j.biocon.2014.03.004 (2014).

    Article 

    Google Scholar 

  • 41.

    Nolte, C. & Agrawal, A. Linking management effectiveness indicators to observed effects of protected areas on fire occurrence in the amazon rainforest. Conserv. Biol. 27, 155–165. https://doi.org/10.1111/j.1523-1739.2012.01930.x (2013).

    Article 
    PubMed 

    Google Scholar 

  • 42.

    Nolte, C., Agrawal, A. & Barreto, P. Setting priorities to avoid deforestation in amazon protected areas: Are we choosing the right indicators?. Environ. Res. Lett. 8, 015039. https://doi.org/10.1088/1748-9326/8/1/015039 (2013).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Eklund, J., Coad, L., Geldmann, J. & Cabeza, M. What constitutes a useful measure of protected area effectiveness? A case study of management inputs and protected area impacts in madagascar. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.107 (2019).

    Article 

    Google Scholar 

  • 44.

    Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108. https://doi.org/10.1016/j.biocon.2016.10.006 (2017).

    Article 

    Google Scholar 

  • 45.

    Schleicher, J., Peres, C. A. & Leader-Williams, N. Conservation performance of tropical protected areas: How important is management?. Conserv. Lett. https://doi.org/10.1111/conl.12650 (2019).

    Article 

    Google Scholar 

  • 46.

    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 47.

    Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of amazon indigenous territories and protected areas. Proc. Natl. Acad. Sci. 117, 3015–3025. https://doi.org/10.1073/pnas.1913321117 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Wolosin, M. & Harris, N. Tropical Forests and Climate Change: The Latest Science (World Resources Institute, 2018).

    Google Scholar 

  • 49.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645–11650. https://doi.org/10.1073/pnas.1710465114 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. https://doi.org/10.1111/cobi.13448 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Rights and Resources Initiative. Who owns the world’s land? A global baseline of formally recognized Indigenous and community land rights. (Rights and Resources Initiative, Washington DC, 2015).

  • 52.

    Santika, T. et al. Community forest management in indonesia: Avoided deforestation in the context of anthropogenic and climate complexities. Glob. Environ. Chang. 46, 60–71. https://doi.org/10.1016/j.gloenvcha.2017.08.002 (2017).

    Article 

    Google Scholar 

  • 53.

    Dudley, N., Shadie, P. & Stolton, S. Guidelines for Applying Protected Area Management Categories Including IUCN WCPA Best Practice Guidance on Recognising Protected Areas and Assigning Management Categories and Governance Types. (IUCN, 2013).

    Google Scholar 

  • 54.

    Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. Multiple use protected areas in reducing tropical forest fires: A global analysis using matching methods. PLoS ONE 6, e22722, https://doi.org/10.1371/journal.pone.0022722 (2011).

  • 55.

    Ferraro, P. J., Hanauer, M. M. & Sims, K. R. E. Conditions associated with protected area success in conservation and poverty reduction. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1011529108 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30, 133–141. https://doi.org/10.1111/cobi.12568 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Buchner, B. et al. The Global Landscape of Climate Finance 2015 (Climate Policy Initiative, 2015).

    Google Scholar 

  • 58.

    Climate Focus. Progress on the New York Declaration on Forests: Finance for Forests (Climate Focus, 2017).

    Google Scholar 

  • 59.

    Scharlemann, J. P. W. et al. Securing tropical forest carbon: The contribution of protected areas to redd. Oryx 44, 352–357 (2010).

    Article 

    Google Scholar 

  • 60.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 61.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111. https://doi.org/10.1126/science.aau3445 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 62.

    Zarin, D. J. et al. Tree Biomass Loss: CO2 Emissions from Aboveground Woody Biomass Loss in the Tropics. www.globalforestwatch.org (2020).

  • 63.

    Coad, L. et al. Measuring impact of protected area management interventions: Current and future use of the global database of protected area management effectiveness. Philos. Trans. R. Soc. London B Biol. Sci. 370 (2015).

  • 64.

    Ho, D., Imai, K., King, G. & Stuart, E. Matchit: Nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42 (2011).

  • 65.

    Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009. https://doi.org/10.1088/1748-9326/7/4/044009 (2012).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Ewers, R. M. & Rodrigues, A. S. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 23, 113–116 (2008).

    Article 

    Google Scholar 

  • 67.

    Oliveira, P. J. et al. Land-use allocation protects the peruvian amazon. Science 317, 1233–1236 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 68.

    Negret, P. J. et al. Effects of spatial autocorrelation and sampling design on estimates of protected area effectiveness. Conserv. Biol. 34, 1452–1462. https://doi.org/10.1111/cobi.13522 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Miettinen, J., Shi, C., Tan, W. J. & Liew, S. C. 2010 land cover map of insular southeast asia in 250-m spatial resolution. Remote Sens. Lett. 3, 11–20. https://doi.org/10.1080/01431161.2010.526971 (2012).

    Article 

    Google Scholar 

  • 70.

    Stuart, E., Rubin, D. & Osborne, J. Best Practices in Quantitative Methods (Sage Publications, 2007).

    Google Scholar 

  • 71.

    Barton, K. & Barton, M. K. Package ‘mumin’. Version 1, 18 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    A constraint on historic growth in global photosynthesis due to increasing CO2

    A tool to speed development of new solar cells