in

Spatial and temporal patterns in the sex ratio of American lobsters (Homarus americanus) in southwestern Nova Scotia, Canada

  • 1.

    Hanson, J. M. Predator-prey interactions of American lobster (Homarus americanus) in the southern Gulf of St. Lawrence, Canada. New Zeal. J. Mar. Freshw. Res. 43, 69–88 (2009).

    Google Scholar 

  • 2.

    DFO. Canada’s Fisheries Fast Facts 2019. (2020).

  • 3.

    Fisheries and Oceans Canada. Integrated Fishery Management Plan (Summary). Lobster fishing area 27–38. Scotia-Fundy Sector Maritimes Region 2011. DFO Report (2009).

  • 4.

    Howell, W. H., Watson, W. H. & Jury, S. H. Skewed sex ratio in an estuarine lobster (Homarus americanus) population. J. Shellfish Res. 18, 193–201 (1999).

    Google Scholar 

  • 5.

    Jury, S. H., Pugh, T. L., Henninger, H., Carloni, J. T. & Watson, W. H. Patterns and possible causes of skewed sex ratios in American lobster (Homarus americanus) populations. Invertebr. Reprod. Dev. https://doi.org/10.1080/07924259.2019.1595184 (2019).

    Article 

    Google Scholar 

  • 6.

    Ogburn, B. M. The effects of sex-biased fisheries on crustacean sex ratios and reproductive output. Invertebr. Reprod. Dev. 63, 200–207 (2019).

    Google Scholar 

  • 7.

    Cooper, R., Clifford, R. & Newelll, C. Seasonal abundance of the American lobster, Homarus americanus, in the Boothbay region of Maine. Trans. Am. Fish. Soc. 104, 669–674 (1975).

    Google Scholar 

  • 8.

    Pitnick, S. Operational sex ratios and sperm limitation in populations of Drosophila pachea. Behav. Ecol. Sociobiol. 33, 383–391 (1993).

    Google Scholar 

  • 9.

    MacDiarmid, A. B. & Butler, M. J. IV. Sperm economy and limitation in spiny lobsters. Behav. Ecol. Sociobiol. 46, 14–24 (1999).

    Google Scholar 

  • 10.

    Sato, T. Plausible causes for sperm-store variations in the coconut crab Birgus latro under large male-selective harvesting. Aquat. Biol. 13, 11–19 (2011).

    Google Scholar 

  • 11.

    Ogburn, M., Roberts, P., Richie, K., Johnson, E. & Hines, A. Temporal and spatial variation in sperm stores in mature female blue crabs Callinectes sapidus and potential effects on brood production in Chesapeake Bay. Mar. Ecol. Prog. Ser. 507, 249–262 (2014).

    ADS 

    Google Scholar 

  • 12.

    Pardo, L. M., Rosas, Y., Fuentes, J. P., Riveros, M. P. & Chaparro, O. R. Fishery induces sperm depletion and reduction in male reproductive potential for crab species under male-biased harvest strategy. PLoS ONE 10, e0115525 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Pardo, L. M. et al. High fishing intensity reduces females’ sperm reserve and brood fecundity in a eubrachyuran crab subject to sex-and size-biased harvest. ICES J. Mar. Sci. 74, 2459–2469 (2017).

    Google Scholar 

  • 14.

    Tremblay, J. M. & Smith, S. J. Lobster (Homarus americanus) catchability in different habitats in late spring and early fall. Mar. Freshw. Res. 52, 1321–1331 (2001).

    Google Scholar 

  • 15.

    Karnofsky, E., Atema, J. & RH, E. Field observations of social behavior, shelter use, and foraging in the lobster, Homarus americanus. Biol. Bull. 176, 239–246 (1989).

    PubMed 

    Google Scholar 

  • 16.

    Cowan, D. F., Watson, W., Solow, A. & Mountcastle, A. Thermal histories of brooding lobsters, Homarus americanus, in the Gulf of Maine. Springer 150, 463–470 (2007).

    Google Scholar 

  • 17.

    Chang, J., Chen, Y., Holland, D. & Grabowski, J. Estimating spatial distribution of American lobster Homarus americanus using habitat variables. Mar. Ecol. Prog. Ser. 420, 145–156 (2010).

    ADS 

    Google Scholar 

  • 18.

    Anderson, J., Olsen, Z., Wagner Glen Sutton, T., Gelpi, C. & Topping, D. Environmental drivers of the spatial and temporal distribution of spawning blue crabs Callinectes sapidus in the Western Gulf of Mexico. N. Am. J. Fish. Manag. 37, 920–934 (2017).

    Google Scholar 

  • 19.

    Crossin, G. T., Al-Ayoub, S. A., Jury, S. H., Howell, W. H. & Watson, W. H. Behavioral thermoregulation in the American lobster Homarus americanus. J. Exp. Biol. 201, 365–374 (1998).

    PubMed 
    CAS 

    Google Scholar 

  • 20.

    Powers, J., Lopez, G., Cerrato, R. & Dove, A. Effects of thermal stress on Long Island Sound lobsters, H. americanus. in Long Island Sound Lobster Research Initiative Working Meeting. University of Connecticut at Avery Point, Groton. (2004).

  • 21.

    Comeau, M. & Savoie, F. Maturity and reproductive cycle of the female American lobster, Homarus americanus, in the southern Gulf of St. Lawrence, Canada. J. Crustac. Biol. https://doi.org/10.1163/20021975-99990290 (2002).

    Article 

    Google Scholar 

  • 22.

    Quinn, B. K. Threshold temperatures for performance and survival of American lobster larvae: A review of current knowledge and implications to modeling impacts of climate change. Fish. Res. 186, 383–396 (2017).

    Google Scholar 

  • 23.

    Campbell, A. & Stasko, A. Movement of lobsters (Homarus americanus) tagged in the Bay of Fundy, Canada. Mar. Biol. 92, 393–404 (1986).

    Google Scholar 

  • 24.

    Campbell, A. Aggregations of berried lobsters (Homarus americanus) in shallow waters off Grand Manan, eastern Canada. Can. J. Fish. Aquat. Sci. 47, 520–523 (1990).

    Google Scholar 

  • 25.

    Watson, W. & Jury, S. H. The relationship between American lobster catch, entry rate into traps and density. Taylor Fr. 9, 59–68 (2013).

    Google Scholar 

  • 26.

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 27.

    Cheng, L. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, 10 (2017).

    Google Scholar 

  • 28.

    Aiken, D. E. & Waddy, S. L. Environmental influence on recruitment of the American lobster, Homarus americanus: A perspective. Can. J. Fish. Aquat. Sci. 43, 2258–2270 (1986).

    Google Scholar 

  • 29.

    Greenan, B. J. W. et al. Climate change vulnerability of American lobster fishing communities in Atlantic Canada. Front. Mar. Sci. 6, 579 (2019).

    Google Scholar 

  • 30.

    QGIS Geographic Information System. QGIS Association. http://www.qgis.org/ (2021).

  • 31.

    Tveite, H. NNJoin. http://arken.nmbu.no/~havatv/gis/qgisplugins/NNJoin (2014).

  • 32.

    Hosmer, D. J., Lemeshow, S. & Sturdivant, R. Applied Logistic Regression (John Wiley & Sons, 2013).

    MATH 

    Google Scholar 

  • 33.

    Thakur, K. K. et al. Risk factors associated with soft-shelled lobsters (Homarus americanus) in southwestern Nova Scotia, Canada. FACETS 2, 15–33 (2017).

    Google Scholar 

  • 34.

    Dohoo, I., Martin, W. & Stryhn, H. Veterinary Epidemiologic Research (VER Inc., 2009).

    Google Scholar 

  • 35.

    Pezzack, D. S. et al. The American lobster Homarus americanus fishery off of south-western Nova Scotia (Lobster Fishing Area 34). Canadian Stock Assessment Secretariat Research Document 99/32 (1999).

  • 36.

    Watson, W. H. & Little, S. A. Differences in the size at maturity of female American lobsters, Homarus americanus, captured throughout the range of the offshore fishery. J. Crustac. Biol. 25, 585–592 (2005).

    Google Scholar 

  • 37.

    Pezzack, D., Tremblay, J., Claytor, R., Frail, C. & Smith, S. Stock status and indicators for the lobster fishery in Lobster Fishing Area 34. Canadian Stock Assessment Secretariat Research Document 2006/101 (2006).

  • 38.

    Wu, Y. & Tang, C. Atlas of ocean currents in eastern Canadian waters. Canadian Technical Report of Hydrography and Ocean Sciences. 271 (2011).

  • 39.

    Brickman, D. Could ocean currents be responsible for the west to east spread of aquatic invasive species in Maritime Canadian waters?. Mar. Pollut. Bull. 85, 235–243 (2014).

    PubMed 
    CAS 

    Google Scholar 

  • 40.

    Cowan, D. F., Solow, A. & Beet, A. R. Patterns in abundance and growth of juvenile lobster Homarus americanus. CSIRO https://doi.org/10.1071/MF01191 (2001).

    Article 

    Google Scholar 

  • 41.

    Morse, B. L., Quinn, B. K., Comeau, M. & Rochette, R. Stock structure and connectivity of the American lobster (Homarus americanus) in the southern Gulf of St. Lawrence: Do benthic movements matter?. Can. J. Fish. Aquat. Sci. 75, 2096–2108 (2018).

    Google Scholar 

  • 42.

    Staples, K. W., Chen, Y., Townsend, D. W. & Brady, D. C. Spatiotemporal variability in the phenology of the initial intra-annual molt of American lobster (Homarus americanus Milne Edwards, 1837) and its relationship with bottom temperatures in a changing Gulf of Maine. Fish. Oceanogr. 28, 468–485 (2019).

    Google Scholar 

  • 43.

    Goñi, R., Quetglas, A. & Reñones, O. Differential catchability of male and female European spiny lobster Palinurus elephas (Fabricius, 1787) in traps and trammelnets. Fish. Res. 65, 295–307 (2003).

    Google Scholar 

  • 44.

    Audet, D., Miron, G. & Moriyasu, M. Biological characteristics of a newly established green crab (Carcinus maenas) population in the southern gulf of St. Lawrence, Canada. J. Shellfish Res. 27, 427–441 (2008).

    Google Scholar 

  • 45.

    Laurans, M., Fifas, S., Demaneche, S., Brérette, S. & Debec, O. Modelling seasonal and annual variation in size at functional maturity in the European lobster (Homarus gammarus) from self-sampling data. ICES J. Mar. Sci. 66, 1892–1898 (2009).

    Google Scholar 

  • 46.

    Cooper, R. & Uzmann, J. Migrations and growth of deep-sea lobsters, Homarus americanus. Science 171, 288–290 (1971).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 47.

    Robichaud, D. A. & Campbell, A. Annual and seasonal size-frequency changes of trap-caught lobsters (Homarus americanus) in the Bay of Fundy. J. Northw. Atl. Fish. Sci 11, 2 (1991).

    Google Scholar 

  • 48.

    Waddy, S. L. & Aiken, D. E. Seasonal variation in spawning by preovigerous American lobster (Homarus americanus) in response to temperature and photoperiod manipulation. Can. J. Fish. Aquat. Sci. 49, 1114–1117 (1992).

    Google Scholar 

  • 49.

    Campbell, A. & Stasko, A. B. Movements of lobsters (Homarus americanus) tagged in the Bay of Fundy, Canada. Mar. Biol. Int. J. Life Ocean. Coast. Waters 92, 393–404 (1986).

    Google Scholar 

  • 50.

    Haakonsen, H. & Anoruo, A. Tagging and migration of the American lobster Homarus americanus. Rev. Fish. Sci. 2, 79–93 (1994).

    Google Scholar 

  • 51.

    Lawton, P. & Lavalli, K. Postlarval, juvenile, adolescent and adult ecology. In Biology of the lobster Homarus americanus (ed. Jd, F.) 47–81 (Academic, 1995).

    Google Scholar 

  • 52.

    Attard, J. & Hudon, C. Embryonic development and energetic investment in egg production in relation to size of female lobster (Homarus americanus). Can. J. Fish. Aquat. Sci. 44, 1157–1164 (1987).

    Google Scholar 

  • 53.

    Krouse, J. Maturity, sex ratio, and size composition of the natural population of American lobster, Homarus americanus, along the Maine coast. Fish. Bull. 71, 165–173 (1973).

    Google Scholar 

  • 54.

    Sato, T. Impacts of large male-selective harvesting on reproduction: Illustration with large decapod crustacean resources. Aqua-BioSci. Monogr. 5, 67–102 (2012).

    CAS 

    Google Scholar 

  • 55.

    Raymond, S. M. C. & Todd, C. R. Assessing risks to threatened crayfish populations from sex-based harvesting and differential encounter rates: A new indicator for reproductive state. Ecol. Indic. 118, 106661 (2020).

    Google Scholar 

  • 56.

    Estrella, B. & McKiernan, D. Catch-Per-Unit-Effort and Biological Parameters from the Massachusetts Coastal Lobster (Homarus americanus) Resource: Description and Trends (NOAA Technical Report, 1989).

    Google Scholar 

  • 57.

    Smolowitz, R., Chistoserdov, A. Y. & Hsu, A. A description of the pathology epizootic shell disease in the American lobster (Homarus americanus) H. Milne Edwards 1837. J. Shellfish Res. 24, 749–756 (2005).

    Google Scholar 

  • 58.

    Glenn, R. & Pugh, T. Epizootic shell disease in American lobster (Homarus americanus) in Massachusetts coastal waters: Interactions of temperature, maturity, and intermolt duration. J. Crustac. Biol. 26, 639–645 (2006).

    Google Scholar 

  • 59.

    Chistoserdov, A., Quinn, R., Gubbala, S. & Smolowitz, R. Bacterial communities associated with lesions of shell disease in the American lobster Homarus americanus. J. Shellfish Res. 31, 449–462 (2012).

    Google Scholar 

  • 60.

    Meres, N. et al. Dysbiosis in epizootic shell disease of the American lobster (Homarus americanus). J. Shellfish Res. 31, 463–472 (2012).

    Google Scholar 

  • 61.

    Shields, J. D., Wheeler, K. N. & Moss, J. A. Histological assessment of the lobster (Homarus americanus) in the ‘100 Lobsters’ project. J. Shellfish Res. 31, 439–447 (2012).

    Google Scholar 

  • 62.

    Hoenig, J. M. et al. Impact of disease on the survival of three commercially fished species. Ecol. Appl. 27, 2116–2127 (2017).

    PubMed 

    Google Scholar 

  • 63.

    Stevens, B. Effects of epizootic shell disease in American lobster Homarus americanus determined using a quantitative disease index. Dis. Aquat. Organ. 88, 25–34 (2009).

    PubMed 

    Google Scholar 

  • 64.

    Clark, A. S., Jury, S. H., Goldstein, J. S., Langley, T. G. & Watson, W. H. A comparison of American lobster size structure and abundance using standard and ventless traps. Fish. Res. 167, 243–251 (2015).

    Google Scholar 

  • 65.

    Jury, S., Kinnison, M., Howell, W., Winsor, H. & Watson, I. The behavior of lobsters in response to reduced salinity. J. Exp. Mar. Biol. Ecol. 180, 23–37 (1994).

    Google Scholar 


  • Source: Ecology - nature.com

    New visions for better transportation

    The power of economics to explain and shape the world