in

Species diversity and food web structure jointly shape natural biological control in agricultural landscapes

  • 1.

    van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article 

    Google Scholar 

  • 6.

    IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (IPBES secretariat, Bonn, Germany, 2019).

  • 7.

    Smith, H. F. & Sullivan, C. A. Ecosystem services within agricultural landscapes—farmers’ perceptions. Ecol. Econ. 98, 72–80 (2014).

    Article 

    Google Scholar 

  • 8.

    Barnes, A. D. et al. Biodiversity enhances the multitrophic control of arthropod herbivory. Sci. Adv. 6, eabb6603 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 12.

    Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621–645 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Frishkoff, L. O. et al. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345, 1343–1346 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, E7863–E7870 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Redlich, S., Martin, E. A. & Steffan-Dewenter, I. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. 55, 2419–2428 (2018).

    Article 

    Google Scholar 

  • 18.

    Muneret, L. et al. Evidence that organic farming promotes pest control. Nat. Sustain. 1, 361–368 (2018).

    Article 

    Google Scholar 

  • 19.

    Roubos, C. R., Rodriguez-Saona, C. & Isaacs, R. Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biol. Control 75, 28–38 (2014).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Roschewitz, I., Hucker, M., Tscharntke, T. & Thies, C. The influence of landscape context and farming practices on parasitism of cereal aphids. Agric. Ecosyst. Environ. 108, 218–227 (2005).

    Article 

    Google Scholar 

  • 21.

    Frago, E., Pujadevillar, J., Guara, M. & Selfa, J. Hyperparasitism and seasonal patterns of parasitism as potential causes of low top-down control in Euproctis chrysorrhoea L. (Lymantriidae). Biol. Control 60, 123–131 (2012).

    Article 

    Google Scholar 

  • 22.

    Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J. & Jaffee, B. A. Intraguild predation among biological-control agents: theory and evidence. Biol. Control 5, 303–335 (1995).

    Article 

    Google Scholar 

  • 23.

    Brobyn, P. J., Clark, S. J. & Wilding, N. The effect of fungus infection of Metopolophium dirhodum [Hom.: Aphididae] on the oviposition behaviour of the aphid parasitoid Aphidius rhopalosiphi [Hym.: Aphidiidae]. Entomophaga 33, 333–338 (1988).

    Article 

    Google Scholar 

  • 24.

    Tscharntke, T. et al. Conservation biological control and enemy diversity on a landscape scale. Biol. Control 43, 294–309 (2007).

    Article 

    Google Scholar 

  • 25.

    Rand, T. A., van Veen, F. J. F. & Tscharntke, T. Landscape complexity differentially benefits generalized fourth, over specialized third, trophic level natural enemies. Ecography 35, 97–104 (2012).

    Article 

    Google Scholar 

  • 26.

    Zhao, Z. H., Hui, C., He, D. H. & Li, B. L. Effects of agricultural intensification on ability of natural enemies to control aphids. Sci. Rep. 5, 8024 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Vollhardt, I. M. G., Tscharntke, T., Wäckers, F. L., Bianchi, F. J. J. A. & Thies, C. Diversity of cereal aphid parasitoids in simple and complex landscapes. Agric. Ecosyst. Environ. 126, 289–292 (2008).

    Article 

    Google Scholar 

  • 28.

    Tomanović, Z. et al. Regional tritrophic relationship patterns of five aphid parasitoid species (Hymenoptera: Braconidae: Aphidiinae) in agroecosystem-dominated landscapes of southeastern Europe. J. Econ. Entomol. 102, 836–854 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Kaartinen, R. & Roslin, T. Shrinking by numbers: landscape context affects the species composition but not the quantitative structure of local food webs. J. Anim. Ecol. 80, 622–631 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecol. Lett. 21, 9–20 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Garzke, J., Connor, S. J., Sommer, U. & O’Connor, M. I. Trophic interactions modify the temperature dependence of community biomass and ecosystem function. PLoS Biol. 17, e2006806 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Pocock, M. J. O. et al. The visualisation of ecological networks, and their use as a tool for engagement, advocacy and management. Adv. Ecol. Res. 54, 41–85 (2016).

    Article 

    Google Scholar 

  • 33.

    Bersier, L.-F., Banašek-Richter, C. & Cattin, M.-F. Quantitative descriptors of food-web matrices. Ecology 83, 2394–2407 (2002).

    Article 

    Google Scholar 

  • 34.

    Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279 (2010).

    Article 

    Google Scholar 

  • 35.

    Gilbert, A. J. Connectance indicates the robustness of food webs when subjected to species loss. Ecol. Indic. 9, 72–80 (2009).

    Article 

    Google Scholar 

  • 36.

    Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Galiana, N., Hawkins, B. A. & Montoya, J. M. The geographical variation of network structure is scale dependent: understanding the biotic specialization of host–parasitoid networks. Ecography 42, 1175–1187 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Banašek-Richter, C., Cattin, M.-F. & Bersier, L.-F. Sampling effects and the robustness of quantitative and qualitative food-web descriptors. J. Theor. Biol. 226, 23–32 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Varennes, Y. D., Boyer, S. & Wratten, S. D. Un-nesting DNA Russian dolls—the potential for constructing food webs using residual DNA in empty aphid mummies. Mol. Ecol. 23, 3925–3933 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Zhu, Y. L. et al. A molecular detection approach for a cotton aphid-parasitoid complex in northern China. Sci. Rep. 9, 15836 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 41.

    Staniczenko, P. P. A. et al. Predicting the effect of habitat modification on networks of interacting species. Nat. Commun. 8, 792 (2018).

    Article 
    CAS 

    Google Scholar 

  • 42.

    Thies, C. & Tscharntke, T. In Biocontrol-Based Integrated Management of Oilseed Rape Pests (ed. Williams, I.H.). (Springer Netherlands, 2010).

  • 43.

    Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445, 202–205 (2007).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Grass, I., Jauker, B., Steffandewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nat. Ecol. Evol. 2, 1408–1417 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Gagic, V. et al. Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc. Roy. Soc. B. 278, 2946–2953 (2011).

    Article 

    Google Scholar 

  • 46.

    Lundgren, J. G. & Fausti, S. W. Trading biodiversity for pest problems. Sci. Adv. 1, e1500558 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Zhou, K. et al. Effects of land use and insecticides on natural enemies of aphids in cotton: first evidence from smallholder agriculture in the North China Plain. Agric. Ecosyst. Environ. 183, 176–184 (2014).

    Article 

    Google Scholar 

  • 48.

    Zhang, Z. Q. The natural enemies of Aphis gossypii Glover (Hom., Aphididae) in China. J. Appl. Entomol. 114, 251–262 (2009).

    Article 

    Google Scholar 

  • 49.

    Gagic, V. et al. Agricultural intensification and cereal aphid–parasitoid–hyperparasitoid food webs: network complexity, temporal variability and parasitism rates. Oecologia 170, 1099–1109 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Vollhardt, I. M. G. et al. Influence of plant fertilisation on cereal aphid-primary parasitoid-secondary parasitoid networks in simple and complex landscapes. Agric. Ecosyst. Environ. 281, 47–55 (2019).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Sullivan, D. J. & Völkl, W. Hyperparasitism: multitrophic ecology and behavior. Annu. Rev. Entomol. 44, 291–315 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Dainese, M., Montecchiari, S., Sitzia, T., Sigura, M. & Marini, L. High cover of hedgerows in the landscape supports multiple ecosystem services in Mediterranean cereal fields. J. Appl. Ecol. 54, 380–388 (2016).

    Article 

    Google Scholar 

  • 53.

    Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Thies, C., Roschewitz, I. & Tscharntke, T. The landscape context of cereal aphid-parasitoid interactions. Proc. Roy. Soc. B. 272, 203–210 (2005).

    Article 

    Google Scholar 

  • 55.

    Plećaš, M. et al. Landscape composition and configuration influence cereal aphid–parasitoid–hyperparasitoid interactions and biological control differentially across years. Agric. Ecosyst. Environ. 183, 1–10 (2014).

    Article 

    Google Scholar 

  • 56.

    Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 23, 4946–4957 (2017).

    Article 

    Google Scholar 

  • 58.

    Osorio, S., Arnan, X., Bassols, E., Vicens, N. & Bosch, J. Local and landscape effects in a host-parasitoid interaction network along a forest-cropland gradient. Ecol. Appl. 25, 1869–1879 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Dunne, J., Williams, R. & Martinez, N. Network topology and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Article 

    Google Scholar 

  • 60.

    Montoya, J. M., Rodríguez, M. A. & Hawkins, B. A. Food web complexity and higher-level ecosystem services. Ecol. Lett. 6, 587–593 (2003).

    Article 

    Google Scholar 

  • 61.

    Hawkins, B. A. Parasitoid-host food webs and donor control. Oikos 65, 159–162 (1992).

    Article 

    Google Scholar 

  • 62.

    Yeakel, J. D. et al. Diverse interactions and ecosystem engineering can stabilize community assembly. Nat. Commun. 11, 3307 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Poisot, T., Mouquet, N. & Gravel, D. Trophic complementarity drives the biodiversity-ecosystem functioning relationship in food webs. Ecol. Lett. 16, 853–861 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    White, L., O’Connor, N. E., Yang, Q., Emmerson, M. C. & Donohue, I. Individual species provide multifaceted contributions to the stability of ecosystems. Nat. Ecol. Evol. 4, 1594–1601 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Ho, H.-C., Tylianakis, J. M. & Pawar, S. Behaviour moderates the impacts of food-web structure on species coexistence. Ecol. Lett. 24, 298–309 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Holland, J. M. et al. Agri-environment scheme enhancing ecosystem services: A demonstration of improved biological control in cereal crops. Agric. Ecosyst. Environ. 155, 147–152 (2012).

    Article 

    Google Scholar 

  • 67.

    Batary, P., Dicks, L., Kleijn, D. & Sutherland, W. The role of agri-environment schemes in conservation and environmental management: European Agri-Environment Schemes. Conserv. Biol. 29, 1006–1016 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    McGarigal, K., Cushman, S., Maile, N. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html (2012).

  • 69.

    Liu, B. et al. Secondary crops and non-crop habitats within landscapes enhance the abundance and diversity of generalist predators. Agric. Ecosyst. Environ. 258, 30–39 (2018).

    Article 

    Google Scholar 

  • 70.

    Lu, Y. H., Qi, F. J. & Zhang, Y. J. Integrated Management of Diseases and Insect Pests in Cotton (Golden Shield Press, Beijing 2010).

  • 71.

    Shannon, C. E., Weaver, W., Blahut, R. E. & Hajek, B. The Mathematical Theory of Communications (University of Illinois Press, Urbana, 1949).

  • 72.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS 
    Article 

    Google Scholar 

  • 73.

    R Development Core Team. R: A language and environment for statistical computing, Version 4.0.2. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2020).

  • 74.

    Dormann, C. F., Fründ, J. & Gruber, B. Package ‘bipartite’: Visualising bipartite networks and calculating some (ecological) indices. (2019).

  • 75.

    Huang, H. Y., Zhou, L., Chen, J. & Wei, T. Y. ggcor: Extended tools for correlation analysis and visualization. R package version 0.9.7. (2020).

  • 76.

    Oksanen, J. et al. vegan: community ecology package. R. package version 2, 5–6 (2020).

    Google Scholar 

  • 77.

    Kassambara, A. & Fabian, M. factoextra: Extract and Visualize the Results of Multivariate Data analyses. R package version 1.0.7. (2020).

  • 78.

    Akaike, H. An information criterion (AIC). Math. Sci. 14, 5–9 (1976).

    Google Scholar 

  • 79.

    Burnham, K. P. & Anderson, D. R. Multimodel inference understanding AIC and BIC in model selection. Sociol. Method. Res. 33, 261–304 (2004).

    Article 

    Google Scholar 

  • 80.

    Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third Edition. (Thousand Oaks CA: Sage., 2011).

  • 82.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 83.

    Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.43.17. (2020).

  • 84.

    Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Tylianakis, J. M. & Binzer, A. Effects of global environmental changes on parasitoid–host food webs and biological control. Biol. Control 75, 77–86 (2014).

    Article 

    Google Scholar 

  • 86.

    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar 

  • 87.

    Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 88.

    Yang, F. et al. The data for “Species diversity and food web structure jointly shape natural biological control in agricultural landscapes”. Dryad, Dataset https://doi.org/10.5061/dryad.pc866t1kz (2021).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Smarter regulation of global shipping emissions could improve air quality and health outcomes

    Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism