van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).
Google Scholar
Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).
Google Scholar
Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).
Google Scholar
Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).
Google Scholar
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Google Scholar
IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (IPBES secretariat, Bonn, Germany, 2019).
Smith, H. F. & Sullivan, C. A. Ecosystem services within agricultural landscapes—farmers’ perceptions. Ecol. Econ. 98, 72–80 (2014).
Google Scholar
Barnes, A. D. et al. Biodiversity enhances the multitrophic control of arthropod herbivory. Sci. Adv. 6, eabb6603 (2020).
Google Scholar
Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).
Google Scholar
Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).
Google Scholar
Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).
Google Scholar
Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621–645 (2015).
Google Scholar
Frishkoff, L. O. et al. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345, 1343–1346 (2014).
Google Scholar
Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014).
Google Scholar
Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, E7863–E7870 (2018).
Google Scholar
Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).
Google Scholar
Redlich, S., Martin, E. A. & Steffan-Dewenter, I. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. 55, 2419–2428 (2018).
Google Scholar
Muneret, L. et al. Evidence that organic farming promotes pest control. Nat. Sustain. 1, 361–368 (2018).
Google Scholar
Roubos, C. R., Rodriguez-Saona, C. & Isaacs, R. Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biol. Control 75, 28–38 (2014).
Google Scholar
Roschewitz, I., Hucker, M., Tscharntke, T. & Thies, C. The influence of landscape context and farming practices on parasitism of cereal aphids. Agric. Ecosyst. Environ. 108, 218–227 (2005).
Google Scholar
Frago, E., Pujadevillar, J., Guara, M. & Selfa, J. Hyperparasitism and seasonal patterns of parasitism as potential causes of low top-down control in Euproctis chrysorrhoea L. (Lymantriidae). Biol. Control 60, 123–131 (2012).
Google Scholar
Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J. & Jaffee, B. A. Intraguild predation among biological-control agents: theory and evidence. Biol. Control 5, 303–335 (1995).
Google Scholar
Brobyn, P. J., Clark, S. J. & Wilding, N. The effect of fungus infection of Metopolophium dirhodum [Hom.: Aphididae] on the oviposition behaviour of the aphid parasitoid Aphidius rhopalosiphi [Hym.: Aphidiidae]. Entomophaga 33, 333–338 (1988).
Google Scholar
Tscharntke, T. et al. Conservation biological control and enemy diversity on a landscape scale. Biol. Control 43, 294–309 (2007).
Google Scholar
Rand, T. A., van Veen, F. J. F. & Tscharntke, T. Landscape complexity differentially benefits generalized fourth, over specialized third, trophic level natural enemies. Ecography 35, 97–104 (2012).
Google Scholar
Zhao, Z. H., Hui, C., He, D. H. & Li, B. L. Effects of agricultural intensification on ability of natural enemies to control aphids. Sci. Rep. 5, 8024 (2015).
Google Scholar
Vollhardt, I. M. G., Tscharntke, T., Wäckers, F. L., Bianchi, F. J. J. A. & Thies, C. Diversity of cereal aphid parasitoids in simple and complex landscapes. Agric. Ecosyst. Environ. 126, 289–292 (2008).
Google Scholar
Tomanović, Z. et al. Regional tritrophic relationship patterns of five aphid parasitoid species (Hymenoptera: Braconidae: Aphidiinae) in agroecosystem-dominated landscapes of southeastern Europe. J. Econ. Entomol. 102, 836–854 (2009).
Google Scholar
Kaartinen, R. & Roslin, T. Shrinking by numbers: landscape context affects the species composition but not the quantitative structure of local food webs. J. Anim. Ecol. 80, 622–631 (2011).
Google Scholar
Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecol. Lett. 21, 9–20 (2018).
Google Scholar
Garzke, J., Connor, S. J., Sommer, U. & O’Connor, M. I. Trophic interactions modify the temperature dependence of community biomass and ecosystem function. PLoS Biol. 17, e2006806 (2019).
Google Scholar
Pocock, M. J. O. et al. The visualisation of ecological networks, and their use as a tool for engagement, advocacy and management. Adv. Ecol. Res. 54, 41–85 (2016).
Google Scholar
Bersier, L.-F., Banašek-Richter, C. & Cattin, M.-F. Quantitative descriptors of food-web matrices. Ecology 83, 2394–2407 (2002).
Google Scholar
Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279 (2010).
Google Scholar
Gilbert, A. J. Connectance indicates the robustness of food webs when subjected to species loss. Ecol. Indic. 9, 72–80 (2009).
Google Scholar
Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).
Google Scholar
Galiana, N., Hawkins, B. A. & Montoya, J. M. The geographical variation of network structure is scale dependent: understanding the biotic specialization of host–parasitoid networks. Ecography 42, 1175–1187 (2019).
Google Scholar
Banašek-Richter, C., Cattin, M.-F. & Bersier, L.-F. Sampling effects and the robustness of quantitative and qualitative food-web descriptors. J. Theor. Biol. 226, 23–32 (2004).
Google Scholar
Varennes, Y. D., Boyer, S. & Wratten, S. D. Un-nesting DNA Russian dolls—the potential for constructing food webs using residual DNA in empty aphid mummies. Mol. Ecol. 23, 3925–3933 (2014).
Google Scholar
Zhu, Y. L. et al. A molecular detection approach for a cotton aphid-parasitoid complex in northern China. Sci. Rep. 9, 15836 (2019).
Google Scholar
Staniczenko, P. P. A. et al. Predicting the effect of habitat modification on networks of interacting species. Nat. Commun. 8, 792 (2018).
Google Scholar
Thies, C. & Tscharntke, T. In Biocontrol-Based Integrated Management of Oilseed Rape Pests (ed. Williams, I.H.). (Springer Netherlands, 2010).
Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445, 202–205 (2007).
Google Scholar
Grass, I., Jauker, B., Steffandewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nat. Ecol. Evol. 2, 1408–1417 (2018).
Google Scholar
Gagic, V. et al. Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc. Roy. Soc. B. 278, 2946–2953 (2011).
Google Scholar
Lundgren, J. G. & Fausti, S. W. Trading biodiversity for pest problems. Sci. Adv. 1, e1500558 (2015).
Google Scholar
Zhou, K. et al. Effects of land use and insecticides on natural enemies of aphids in cotton: first evidence from smallholder agriculture in the North China Plain. Agric. Ecosyst. Environ. 183, 176–184 (2014).
Google Scholar
Zhang, Z. Q. The natural enemies of Aphis gossypii Glover (Hom., Aphididae) in China. J. Appl. Entomol. 114, 251–262 (2009).
Google Scholar
Gagic, V. et al. Agricultural intensification and cereal aphid–parasitoid–hyperparasitoid food webs: network complexity, temporal variability and parasitism rates. Oecologia 170, 1099–1109 (2012).
Google Scholar
Vollhardt, I. M. G. et al. Influence of plant fertilisation on cereal aphid-primary parasitoid-secondary parasitoid networks in simple and complex landscapes. Agric. Ecosyst. Environ. 281, 47–55 (2019).
Google Scholar
Sullivan, D. J. & Völkl, W. Hyperparasitism: multitrophic ecology and behavior. Annu. Rev. Entomol. 44, 291–315 (1999).
Google Scholar
Dainese, M., Montecchiari, S., Sitzia, T., Sigura, M. & Marini, L. High cover of hedgerows in the landscape supports multiple ecosystem services in Mediterranean cereal fields. J. Appl. Ecol. 54, 380–388 (2016).
Google Scholar
Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).
Google Scholar
Thies, C., Roschewitz, I. & Tscharntke, T. The landscape context of cereal aphid-parasitoid interactions. Proc. Roy. Soc. B. 272, 203–210 (2005).
Google Scholar
Plećaš, M. et al. Landscape composition and configuration influence cereal aphid–parasitoid–hyperparasitoid interactions and biological control differentially across years. Agric. Ecosyst. Environ. 183, 1–10 (2014).
Google Scholar
Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).
Google Scholar
Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 23, 4946–4957 (2017).
Google Scholar
Osorio, S., Arnan, X., Bassols, E., Vicens, N. & Bosch, J. Local and landscape effects in a host-parasitoid interaction network along a forest-cropland gradient. Ecol. Appl. 25, 1869–1879 (2015).
Google Scholar
Dunne, J., Williams, R. & Martinez, N. Network topology and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
Google Scholar
Montoya, J. M., Rodríguez, M. A. & Hawkins, B. A. Food web complexity and higher-level ecosystem services. Ecol. Lett. 6, 587–593 (2003).
Google Scholar
Hawkins, B. A. Parasitoid-host food webs and donor control. Oikos 65, 159–162 (1992).
Google Scholar
Yeakel, J. D. et al. Diverse interactions and ecosystem engineering can stabilize community assembly. Nat. Commun. 11, 3307 (2020).
Google Scholar
Poisot, T., Mouquet, N. & Gravel, D. Trophic complementarity drives the biodiversity-ecosystem functioning relationship in food webs. Ecol. Lett. 16, 853–861 (2013).
Google Scholar
White, L., O’Connor, N. E., Yang, Q., Emmerson, M. C. & Donohue, I. Individual species provide multifaceted contributions to the stability of ecosystems. Nat. Ecol. Evol. 4, 1594–1601 (2020).
Google Scholar
Ho, H.-C., Tylianakis, J. M. & Pawar, S. Behaviour moderates the impacts of food-web structure on species coexistence. Ecol. Lett. 24, 298–309 (2021).
Google Scholar
Holland, J. M. et al. Agri-environment scheme enhancing ecosystem services: A demonstration of improved biological control in cereal crops. Agric. Ecosyst. Environ. 155, 147–152 (2012).
Google Scholar
Batary, P., Dicks, L., Kleijn, D. & Sutherland, W. The role of agri-environment schemes in conservation and environmental management: European Agri-Environment Schemes. Conserv. Biol. 29, 1006–1016 (2015).
Google Scholar
McGarigal, K., Cushman, S., Maile, N. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html (2012).
Liu, B. et al. Secondary crops and non-crop habitats within landscapes enhance the abundance and diversity of generalist predators. Agric. Ecosyst. Environ. 258, 30–39 (2018).
Google Scholar
Lu, Y. H., Qi, F. J. & Zhang, Y. J. Integrated Management of Diseases and Insect Pests in Cotton (Golden Shield Press, Beijing 2010).
Shannon, C. E., Weaver, W., Blahut, R. E. & Hajek, B. The Mathematical Theory of Communications (University of Illinois Press, Urbana, 1949).
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
Google Scholar
R Development Core Team. R: A language and environment for statistical computing, Version 4.0.2. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2020).
Dormann, C. F., Fründ, J. & Gruber, B. Package ‘bipartite’: Visualising bipartite networks and calculating some (ecological) indices. (2019).
Huang, H. Y., Zhou, L., Chen, J. & Wei, T. Y. ggcor: Extended tools for correlation analysis and visualization. R package version 0.9.7. (2020).
Oksanen, J. et al. vegan: community ecology package. R. package version 2, 5–6 (2020).
Kassambara, A. & Fabian, M. factoextra: Extract and Visualize the Results of Multivariate Data analyses. R package version 1.0.7. (2020).
Akaike, H. An information criterion (AIC). Math. Sci. 14, 5–9 (1976).
Burnham, K. P. & Anderson, D. R. Multimodel inference understanding AIC and BIC in model selection. Sociol. Method. Res. 33, 261–304 (2004).
Google Scholar
Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992 (2006).
Google Scholar
Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third Edition. (Thousand Oaks CA: Sage., 2011).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.43.17. (2020).
Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).
Google Scholar
Tylianakis, J. M. & Binzer, A. Effects of global environmental changes on parasitoid–host food webs and biological control. Biol. Control 75, 77–86 (2014).
Google Scholar
Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
Google Scholar
Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).
Google Scholar
Yang, F. et al. The data for “Species diversity and food web structure jointly shape natural biological control in agricultural landscapes”. Dryad, Dataset https://doi.org/10.5061/dryad.pc866t1kz (2021).
Google Scholar
Source: Ecology - nature.com