Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992 (2006).
Google Scholar
Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).
Google Scholar
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 489, 326–326 (2012).
Google Scholar
Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).
Google Scholar
Mori, A. S., Isbell, F. & Seidl, R. β-Diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564 (2018).
Google Scholar
Gonzalez, A. et al. Scaling‐up biodiversity–ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).
Google Scholar
Genung, M. A., Fox, J. & Winfree, R. Species loss drives ecosystem function in experiments, but in nature the importance of species loss depends on dominance. Glob. Ecol. Biogeogr. 29, 1531–1541 (2020).
Google Scholar
Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).
Google Scholar
Wardle, D. A. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 27, 646–653 (2016).
Google Scholar
Wardle, D. A., Bardgett, R. D., Callaway, R. M. & Van der Putten, W. H. Terrestrial ecosystem responses to species gains and losses. Science 332, 1273–1277 (2011).
Google Scholar
Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol. Lett. 12, 1405–1419 (2009).
Google Scholar
Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).
Google Scholar
van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).
Google Scholar
Bannar-Martin, K. H. et al. Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach. Ecol. Lett. 21, 167–180 (2018).
Google Scholar
Leibold, M. A., Chase, J. M. & Ernest, S. K. M. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98, 909–919 (2017).
Google Scholar
Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
Google Scholar
Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).
Google Scholar
HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).
Google Scholar
Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).
Google Scholar
Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).
Google Scholar
Harpole, W. S. et al. Addition of multiple limiting resources reduces grassland diversity. Nature 537, 93–96 (2016).
Google Scholar
Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).
Google Scholar
Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).
Google Scholar
Craven, D. et al. A cross‐scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).
Google Scholar
Barry, K. E. et al. A graphical null model for scaling biodiversity–ecosystem functioning relationships. J. Ecol. 109, 1549–1560 (2021).
Google Scholar
Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).
Google Scholar
Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).
Google Scholar
Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).
Google Scholar
Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160 (2005).
Google Scholar
Fox, J. W. & Kerr, B. Analyzing the effects of species gain and loss on ecosystem function using the extended Price equation partition. Oikos 121, 290–298 (2012).
Google Scholar
Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).
Google Scholar
Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).
Google Scholar
Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).
Google Scholar
Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).
Google Scholar
Stepp, J. R., Castaneda, H. & Cervone, S. Mountains and biocultural diversity. Mt. Res. Dev. 25, 223–227 (2005).
Google Scholar
Balehegn, M. Unintended consequences: the ecological repercussions of land grabbing in sub-Saharan Africa. Environment 57, 4–21 (2015).
The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Africa (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018); https://doi.org/10.5281/ZENODO.3236178
Maitima, J. et al. The linkages between land use change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci. Technol. 3, 310–325 (2009).
Clough, Y. et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl Acad. Sci. USA 108, 8311–8316 (2011).
Google Scholar
Muhumuza, M. & Balkwill, K. Factors affecting the success of conserving biodiversity in national parks: a review of case studies from Africa. Int. J. Biodivers. 2013, 798101 (2013).
Google Scholar
Mbow, C., van Noordwijk, M., Prabhu, R. & Simons, T. Knowledge gaps and research needs concerning agroforestry’s contribution to Sustainable Development Goals in Africa. Curr. Opin. Environ. Sustain. 6, 162–170 (2014).
Google Scholar
Kangalawe, R. Y. M., Noe, C., Tungaraza, F. S. K., Naimani, G. & Mlele, M. Understanding of traditional knowledge and indigenous institutions on sustainable land management in Kilimanjaro Region, Tanzania. Open J. Soil Sci. 04, 469–493 (2014).
Google Scholar
Pretty, J., Toulmin, C. & Williams, S. Sustainable intensification in African agriculture. Int. J. Agric. Sustain. 9, 5–24 (2011).
Google Scholar
Mbow, C. et al. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 6, 61–67 (2014).
Google Scholar
Ofori, D. A. et al. Developing more productive African agroforestry systems and improving food and nutritional security through tree domestication. Curr. Opin. Environ. Sustain. 6, 123–127 (2014).
Google Scholar
Munang, R. et al. Ecosystem Based Adaptation (EBA) for Food Security in Africa—Towards a Comprehensive Strategic Framework to Upscale and Out-scale EBA-Driven Agriculture in Africa (United Nations Environment Programme, 2015).
Albrecht, A. & Kandji, S. T. Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ. 99, 15–27 (2003).
Google Scholar
van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, 3557–3562 (2016).
Google Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Google Scholar
Allen, A. P. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297, 1545–1548 (2002).
Google Scholar
Nottingham, A. T. et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 99, 2455–2466 (2018).
Google Scholar
Hemp, A. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecol. 184, 27–42 (2006).
Google Scholar
Hemp, A. Vegetation of Kilimanjaro: hidden endemics and missing bamboo. Afr. J. Ecol. 44, 305–328 (2006).
Google Scholar
Appelhans, T. et al. Eco-meteorological characteristics of the southern slopes of Kilimanjaro. Tanzan. Int. J. Climatol. 36, 3245–3258 (2016).
Google Scholar
van Genuchten, M. T. H. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980).
Google Scholar
Gebert, F., Steffan-Dewenter, I., Moretto, P. & Peters, M. K. Climate rather than dung resources predict dung beetle abundance and diversity along elevational and land use gradients on Mt. Kilimanjaro. J. Biogeogr. 47, 371–381 (2019).
Google Scholar
Dunning, J. B. CRC Handbook of Avian Body Masses (CRC Press, 2008).
Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).
Google Scholar
Kingdon, J. et al. Mammals of Africa (Bloomsbury, 2013).
Kaspari, M. & Weiser, M. D. The size–grain hypothesis and interspecific scaling in ants. Funct. Ecol. 13, 530–538 (1999).
Google Scholar
Cane, J. H. Estimation of bee size using intertegular span (Apoidea). J. Kans. Entomol. Soc. 60, 145–147 (1987).
Classen, A., Steffan-Dewenter, I., Kindeketa, W. J. & Peters, M. K. Integrating intraspecific variation in community ecology unifies theories on body size shifts along climatic gradients. Funct. Ecol. 31, 768–777 (2017).
Google Scholar
Kendall, L. K. et al. Pollinator size and its consequences: robust estimates of body size in pollinating insects. Ecol. Evol. 9, 1702–1714 (2019).
Google Scholar
Hódar, J. A. The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecol. 17, 421–433 (1996).
Ensslin, A. et al. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6, 45 (2015).
Google Scholar
Cheng, D.-L. & Niklas, K. J. Above- and below-ground biomass relationships across 1534 forested communities. Ann. Bot. 99, 95–102 (2007).
Google Scholar
Pabst, H., Gerschlauer, F., Kiese, R. & Kuzyakov, Y. Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania. Land Degrad. Dev. 27, 592–602 (2016).
Google Scholar
Albrecht, J. et al. Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nat. Commun. 9, 3177 (2018).
Google Scholar
Classen, A. et al. Specialization of plant–pollinator interactions increases with temperature at Mt. Kilimanjaro. Ecol. Evol. 10, 2182–2195 (2020).
Google Scholar
Mayr, A. V. et al. Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera. J. Biogeogr. 47, 854–865 (2020).
Google Scholar
Peters, M. K., Mayr, A., Röder, J., Sanders, N. J. & Steffan-Dewenter, I. Variation in nutrient use in ant assemblages along an extensive elevational gradient on Mt Kilimanjaro. J. Biogeogr. 41, 2245–2255 (2014).
Google Scholar
Genung, M. A. et al. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services. Ecology 98, 1807–1816 (2017).
Google Scholar
Manly, B. F. J. Randomization, Bootstrap, and Monte Carlo Methods in Biology (Chapman & Hall/CRC, 2007).
Gelman, A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1, 515–533 (2006).
Huang, A. & Wand, M. P. Simple marginally noninformative prior distributions for covariance matrices. Bayesian Anal. 8, 439–452 (2013).
Google Scholar
O’Hara, R. B. & Sillanpää, M. J. A review of Bayesian variable selection methods: what, how and which. Bayesian Anal. 4, 85–117 (2009).
Albrecht, J., Hagge, J., Schabo, D. G., Schaefer, H. M. & Farwig, N. Reward regulation in plant–frugivore networks requires only weak cues. Nat. Commun. 9, 4838 (2018).
Google Scholar
Grace, J. B., Johnson, D. J., Lefcheck, J. S. & Byrnes, J. E. K. Quantifying relative importance: computing standardized effects in models with binary outcomes. Ecosphere 9, e02283 (2018).
Google Scholar
Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).
Google Scholar
Levy, R. Bayesian data–model fit assessment for structural equation modeling. Struct. Equ. Modeling 18, 663–685 (2011).
Google Scholar
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
Google Scholar
Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).
Google Scholar
R Development Core Team. R: A Language and Environment for Statistical Computing v. 4.0.3 (R Foundation for Statistical Computing, 2020).
Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-7 http://cran.r-project.org/package=vegan (2020).
Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling http://mcmc-jags.sourceforge.net (2003)
Plummer, M. rjags: Bayesian graphical models using MCMC. R package version 4-10 https://CRAN.R-project.org/package=rjags (2016)
Statisticat, LLC. LaplacesDemon: Complete environment for Bayesian inference. R package version 16.1.4 https://CRAN.R-project.org/package=LaplacesDemon (2021)
Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R N. 6, 7–11 (2006).
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & Borsboom, D. qgraph: network visualizations of relationships in psychometric data. J. Stat. Softw. 48, 1–18 (2012).
Google Scholar
Wood, S. N. Generalized Additive Models: An Introduction with R (CRC/Taylor & Francis, 2017).
Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).
Google Scholar
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Google Scholar
Albrecht, J. et al. Data and code from ‘Species richness is more important for ecosystem functioning than species turnover along an elevational gradient’. Figshare https://doi.org/10.6084/m9.figshare.14544207 (2021).
Source: Ecology - nature.com