in

Species richness is more important for ecosystem functioning than species turnover along an elevational gradient

  • 1.

    Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 489, 326–326 (2012).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Mori, A. S., Isbell, F. & Seidl, R. β-Diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Gonzalez, A. et al. Scaling‐up biodiversity–ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Genung, M. A., Fox, J. & Winfree, R. Species loss drives ecosystem function in experiments, but in nature the importance of species loss depends on dominance. Glob. Ecol. Biogeogr. 29, 1531–1541 (2020).

    Article 

    Google Scholar 

  • 8.

    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Wardle, D. A. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 27, 646–653 (2016).

    Article 

    Google Scholar 

  • 10.

    Wardle, D. A., Bardgett, R. D., Callaway, R. M. & Van der Putten, W. H. Terrestrial ecosystem responses to species gains and losses. Science 332, 1273–1277 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol. Lett. 12, 1405–1419 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Bannar-Martin, K. H. et al. Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach. Ecol. Lett. 21, 167–180 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Leibold, M. A., Chase, J. M. & Ernest, S. K. M. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98, 909–919 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article 

    Google Scholar 

  • 17.

    Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Article 

    Google Scholar 

  • 18.

    HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).

    Article 

    Google Scholar 

  • 19.

    Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    Article 

    Google Scholar 

  • 20.

    Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Harpole, W. S. et al. Addition of multiple limiting resources reduces grassland diversity. Nature 537, 93–96 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 23.

    Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).

    Article 

    Google Scholar 

  • 24.

    Craven, D. et al. A cross‐scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).

    Article 

    Google Scholar 

  • 25.

    Barry, K. E. et al. A graphical null model for scaling biodiversity–ecosystem functioning relationships. J. Ecol. 109, 1549–1560 (2021).

    Article 

    Google Scholar 

  • 26.

    Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Fox, J. W. & Kerr, B. Analyzing the effects of species gain and loss on ecosystem function using the extended Price equation partition. Oikos 121, 290–298 (2012).

    Article 

    Google Scholar 

  • 31.

    Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).

    Article 

    Google Scholar 

  • 35.

    Stepp, J. R., Castaneda, H. & Cervone, S. Mountains and biocultural diversity. Mt. Res. Dev. 25, 223–227 (2005).

    Article 

    Google Scholar 

  • 36.

    Balehegn, M. Unintended consequences: the ecological repercussions of land grabbing in sub-Saharan Africa. Environment 57, 4–21 (2015).

    Google Scholar 

  • 37.

    The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Africa (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018); https://doi.org/10.5281/ZENODO.3236178

  • 38.

    Maitima, J. et al. The linkages between land use change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci. Technol. 3, 310–325 (2009).

    Google Scholar 

  • 39.

    Clough, Y. et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl Acad. Sci. USA 108, 8311–8316 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Muhumuza, M. & Balkwill, K. Factors affecting the success of conserving biodiversity in national parks: a review of case studies from Africa. Int. J. Biodivers. 2013, 798101 (2013).

    Article 

    Google Scholar 

  • 41.

    Mbow, C., van Noordwijk, M., Prabhu, R. & Simons, T. Knowledge gaps and research needs concerning agroforestry’s contribution to Sustainable Development Goals in Africa. Curr. Opin. Environ. Sustain. 6, 162–170 (2014).

    Article 

    Google Scholar 

  • 42.

    Kangalawe, R. Y. M., Noe, C., Tungaraza, F. S. K., Naimani, G. & Mlele, M. Understanding of traditional knowledge and indigenous institutions on sustainable land management in Kilimanjaro Region, Tanzania. Open J. Soil Sci. 04, 469–493 (2014).

    Article 

    Google Scholar 

  • 43.

    Pretty, J., Toulmin, C. & Williams, S. Sustainable intensification in African agriculture. Int. J. Agric. Sustain. 9, 5–24 (2011).

    Article 

    Google Scholar 

  • 44.

    Mbow, C. et al. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 6, 61–67 (2014).

    Article 

    Google Scholar 

  • 45.

    Ofori, D. A. et al. Developing more productive African agroforestry systems and improving food and nutritional security through tree domestication. Curr. Opin. Environ. Sustain. 6, 123–127 (2014).

    Article 

    Google Scholar 

  • 46.

    Munang, R. et al. Ecosystem Based Adaptation (EBA) for Food Security in Africa—Towards a Comprehensive Strategic Framework to Upscale and Out-scale EBA-Driven Agriculture in Africa (United Nations Environment Programme, 2015).

  • 47.

    Albrecht, A. & Kandji, S. T. Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ. 99, 15–27 (2003).

    CAS 
    Article 

    Google Scholar 

  • 48.

    van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, 3557–3562 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar 

  • 50.

    Allen, A. P. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297, 1545–1548 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Nottingham, A. T. et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 99, 2455–2466 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Hemp, A. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecol. 184, 27–42 (2006).

    Article 

    Google Scholar 

  • 53.

    Hemp, A. Vegetation of Kilimanjaro: hidden endemics and missing bamboo. Afr. J. Ecol. 44, 305–328 (2006).

    Article 

    Google Scholar 

  • 54.

    Appelhans, T. et al. Eco-meteorological characteristics of the southern slopes of Kilimanjaro. Tanzan. Int. J. Climatol. 36, 3245–3258 (2016).

    Article 

    Google Scholar 

  • 55.

    van Genuchten, M. T. H. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980).

    Article 

    Google Scholar 

  • 56.

    Gebert, F., Steffan-Dewenter, I., Moretto, P. & Peters, M. K. Climate rather than dung resources predict dung beetle abundance and diversity along elevational and land use gradients on Mt. Kilimanjaro. J. Biogeogr. 47, 371–381 (2019).

    Article 

    Google Scholar 

  • 57.

    Dunning, J. B. CRC Handbook of Avian Body Masses (CRC Press, 2008).

  • 58.

    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    Article 

    Google Scholar 

  • 59.

    Kingdon, J. et al. Mammals of Africa (Bloomsbury, 2013).

  • 60.

    Kaspari, M. & Weiser, M. D. The size–grain hypothesis and interspecific scaling in ants. Funct. Ecol. 13, 530–538 (1999).

    Article 

    Google Scholar 

  • 61.

    Cane, J. H. Estimation of bee size using intertegular span (Apoidea). J. Kans. Entomol. Soc. 60, 145–147 (1987).

    Google Scholar 

  • 62.

    Classen, A., Steffan-Dewenter, I., Kindeketa, W. J. & Peters, M. K. Integrating intraspecific variation in community ecology unifies theories on body size shifts along climatic gradients. Funct. Ecol. 31, 768–777 (2017).

    Article 

    Google Scholar 

  • 63.

    Kendall, L. K. et al. Pollinator size and its consequences: robust estimates of body size in pollinating insects. Ecol. Evol. 9, 1702–1714 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Hódar, J. A. The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecol. 17, 421–433 (1996).

    Google Scholar 

  • 65.

    Ensslin, A. et al. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6, 45 (2015).

    Article 

    Google Scholar 

  • 66.

    Cheng, D.-L. & Niklas, K. J. Above- and below-ground biomass relationships across 1534 forested communities. Ann. Bot. 99, 95–102 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 67.

    Pabst, H., Gerschlauer, F., Kiese, R. & Kuzyakov, Y. Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania. Land Degrad. Dev. 27, 592–602 (2016).

    Article 

    Google Scholar 

  • 68.

    Albrecht, J. et al. Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nat. Commun. 9, 3177 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 69.

    Classen, A. et al. Specialization of plant–pollinator interactions increases with temperature at Mt. Kilimanjaro. Ecol. Evol. 10, 2182–2195 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Mayr, A. V. et al. Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera. J. Biogeogr. 47, 854–865 (2020).

    Article 

    Google Scholar 

  • 71.

    Peters, M. K., Mayr, A., Röder, J., Sanders, N. J. & Steffan-Dewenter, I. Variation in nutrient use in ant assemblages along an extensive elevational gradient on Mt Kilimanjaro. J. Biogeogr. 41, 2245–2255 (2014).

    Article 

    Google Scholar 

  • 72.

    Genung, M. A. et al. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services. Ecology 98, 1807–1816 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Manly, B. F. J. Randomization, Bootstrap, and Monte Carlo Methods in Biology (Chapman & Hall/CRC, 2007).

  • 74.

    Gelman, A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1, 515–533 (2006).

    Google Scholar 

  • 75.

    Huang, A. & Wand, M. P. Simple marginally noninformative prior distributions for covariance matrices. Bayesian Anal. 8, 439–452 (2013).

    Article 

    Google Scholar 

  • 76.

    O’Hara, R. B. & Sillanpää, M. J. A review of Bayesian variable selection methods: what, how and which. Bayesian Anal. 4, 85–117 (2009).

    Google Scholar 

  • 77.

    Albrecht, J., Hagge, J., Schabo, D. G., Schaefer, H. M. & Farwig, N. Reward regulation in plant–frugivore networks requires only weak cues. Nat. Commun. 9, 4838 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 78.

    Grace, J. B., Johnson, D. J., Lefcheck, J. S. & Byrnes, J. E. K. Quantifying relative importance: computing standardized effects in models with binary outcomes. Ecosphere 9, e02283 (2018).

    Article 

    Google Scholar 

  • 79.

    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Article 

    Google Scholar 

  • 80.

    Levy, R. Bayesian data–model fit assessment for structural equation modeling. Struct. Equ. Modeling 18, 663–685 (2011).

    Article 

    Google Scholar 

  • 81.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar 

  • 82.

    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    R Development Core Team. R: A Language and Environment for Statistical Computing v. 4.0.3 (R Foundation for Statistical Computing, 2020).

  • 84.

    Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-7 http://cran.r-project.org/package=vegan (2020).

  • 85.

    Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling http://mcmc-jags.sourceforge.net (2003)

  • 86.

    Plummer, M. rjags: Bayesian graphical models using MCMC. R package version 4-10 https://CRAN.R-project.org/package=rjags (2016)

  • 87.

    Statisticat, LLC. LaplacesDemon: Complete environment for Bayesian inference. R package version 16.1.4 https://CRAN.R-project.org/package=LaplacesDemon (2021)

  • 88.

    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R N. 6, 7–11 (2006).

    Google Scholar 

  • 89.

    Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & Borsboom, D. qgraph: network visualizations of relationships in psychometric data. J. Stat. Softw. 48, 1–18 (2012).

    Article 

    Google Scholar 

  • 90.

    Wood, S. N. Generalized Additive Models: An Introduction with R (CRC/Taylor & Francis, 2017).

  • 91.

    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).

    Article 

    Google Scholar 

  • 92.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar 

  • 93.

    Albrecht, J. et al. Data and code from ‘Species richness is more important for ecosystem functioning than species turnover along an elevational gradient’. Figshare https://doi.org/10.6084/m9.figshare.14544207 (2021).


  • Source: Ecology - nature.com

    Genome-wide analysis reveals associations between climate and regional patterns of adaptive divergence and dispersal in American pikas

    Crossing disciplines, adding fresh eyes to nuclear engineering