Landman, N. H. et al. (eds) Ammonoid Paleobiology (Plenum, 1996). https://doi.org/10.1007/978-1-4757-9153-2_16.
Google Scholar
Klug, C. et al. (eds) Ammonoid Paleobiology: From Anatomy to Ecology (Springer, 2015). https://doi.org/10.1007/978-94-017-9630-9_18.
Google Scholar
Klug, C. et al. (eds) Ammonoid Paleobiology: From Macroevolution to Paleogeography (Springer, 2015). https://doi.org/10.1007/978-94-017-9633-0.
Google Scholar
Ritterbush, K. A., Hoffmann, R., Lukeneder, A. & De Baets, K. Pelagic palaeoecology: The importance of recent constraints on ammonoid palaeobiology and life history. J. Zool. 292(4), 229–241. https://doi.org/10.1111/jzo.12118 (2014).
Google Scholar
Westermann, G. E. G. Ammonoid life and habitat. In Ammonoid Paleobiology (eds Landman, N. H. et al.) 607–707 (Plenum, 1996). https://doi.org/10.1007/978-1-4757-9153-2_16.
Google Scholar
Lukeneder, A. Ammonoid habitats and life history. In Ammonoid Paleobiology: From Anatomy to Ecology (eds Klug, C. et al.) 689–791 (Springer, 2015). https://doi.org/10.1007/978-94-017-9630-9_18.
Google Scholar
Hoffmann, R. et al. A novel multiproxy approach to reconstruct the paleoecology of extinct cephalopods. Gondwana Res. 67, 64–81. https://doi.org/10.1016/j.gr.2018.10.011 (2018).
Google Scholar
Hoffmann, R. et al. Recent advances in heteromorph ammonoid palaeobiology. Biol. Rev. Cambr. Philos. Soc. 96, 576–610. https://doi.org/10.1111/brv.12669 (2021).
Google Scholar
Moriya, K., Nishi, H., Kawahata, H., Tanabe, K. & Takayanagi, Y. Demersal habitat of Late Cretaceous ammonoids: Evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31, 167–170 (2003).
Google Scholar
Moriya, K. Isotope signature of ammonoid shells. In Ammonoid Paleobiology: From Anatomy to Ecology (eds Klug, C. et al.) 793–836 (Springer, 2015). https://doi.org/10.1007/978-94-017-9630-9_19.
Google Scholar
Sessa, J. A. et al. Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms. PNAS 112, 15562–15567. https://doi.org/10.1073/pnas.1507554112 (2015).
Google Scholar
Stevens, K., Mutterlose, J. & Wiedenroth, K. Stable isotope data (δ18O, δ13C) of the ammonite genus Simbirskites—Implications for habitat reconstructions of extinct cephalopods. Palaeogeogr. Palaeoclimatol. Palaeoecol. 417, 164–175. https://doi.org/10.1016/j.palaeo.2014.10.031 (2015).
Google Scholar
Surlyk, F., Dons, T., Clausen, C. K. & Higham, J. Upper Cretaceous. In The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (eds Copestake, P. et al.) 213–233 (Geological Society of London, 2003).
Thibault, N., Harlou, R., Schovsbo, N. H., Stemmerik, L. & Surlyk, F. Late Cretaceous (late Campanian–Maastrichtian) sea surface temperature record of the Boreal Chalk Sea. Clim. Past 12, 429–438. https://doi.org/10.5194/cp-12-429-2016 (2016).
Google Scholar
Wilmsen, M. & Niebuhr, B. High-resolution Campanian-Maastrichtian carbon and oxygen stable isotopes of bulk-rock and skeletal component: Palaeoceanographic and palaeoenvironmental implications for the Boreal shelf sea. Acta Geol. Pol. 67, 47–74. https://doi.org/10.1515/agp-2017-0004 (2017).
Google Scholar
Birkelund, T. Ammonites from the Maastrichtian White Chalk of Denmark. Bull. Geol. Soc. Denmark 40, 33–81 (1993).
Google Scholar
Niebuhr, B. Late Campanian and Early Maastrichtian ammonites from the white chalk of Kronsmoor (northern Germany)—Taxonomy and stratigraphy. Acta Geol. Pol. 53, 257–281 (2003).
Kruta, I. & Landman, N. H. Injuries on Nautilus jaws: Implications for the function of ammonite aptychi. Veliger 50, 241–247 (2008).
Tanabe, K., Kruta, I. & Landman, N. H. Ammonoid buccal mass and jaw apparatus. In Ammonoid Paleobiology: From Macroevolution to Paleogeography (eds Klug, C. et al.) 439–494 (Springer, 2015).
Kruta, I., Landman, N. H. & Cochran, J. K. A new approach for the determination of ammonite and nautilid habitats. PLoS ONE 9, e87479. https://doi.org/10.1371/journal.pone.0087479 (2014).
Google Scholar
Machalski, M. Late Maastrichtian and earliest Danian scaphitid ammonites from central Europe: Taxonomy, evolution, and extinction. Acta Palaeontol. Pol. 50(4), 653–696 (2005).
Machalski, M. Correlation of shell and aptychus growth provides insights into the palaeobiology of a scaphitid ammonite. Palaeontology 64, 225–247. https://doi.org/10.1111/pala.12519 (2021).
Google Scholar
Dubicka, Z. & Peryt, D. Integrated biostratigraphy of Upper Maastrichtian chalk at Chełm (SE Poland). Ann. Soc. Geol. Pol. 81, 185–197 (2011).
Dubicka, Z. & Peryt, D. Latest Campanian and Maastrichtian palaeoenvironmental changes: Implications from an epicontinental sea (SE Poland and western Ukraine). Cret. Res. 37, 272–284. https://doi.org/10.1016/j.cretres.2012.04.009 (2012).
Google Scholar
Machalski, M. & Malchyk, O. Durophagous predation on late Maastrichtian (Cretaceous) scaphitid ammonites from Poland. In 10th International Symposium “Cephalopods—Present and Past”, Program and Abstracts. Münstersche Forschungen zur Geologie und Paläontologie 110, 77–78 (2018).
Keupp, H. Sublethal punctures in body chambers of Mesozoic ammonites (forma Aegra fenestra n. f.), a tool to interpret synecological relationships, particularly predator–prey interactions. Paläontol. Z. 80, 112–123. https://doi.org/10.1007/BF02988971 (2006).
Google Scholar
Mironenko, A. Sublethal injuries on the shells of Jurassic ammonites from Central Russia. In Jurassic Deposits of the Southern Part of the Moscow Syneclise and Their Fauna (eds Rogov, M. A. & Zakharov, V. A.) 183–208 (Transactions of the Geological Institute, GEOS, 2017) (in Russian).
Moriya, K. Evolution of habitat depth in the Jurassic-Cretaceous ammonoids. PNAS 112, 15540–15541. https://doi.org/10.1073/pnas.1520961112 (2015).
Google Scholar
Leszczyński, K. The internal geometry and lithofacies pattern of the Upper Cretaceous-Danian sequence in the Polish Lowlands. Geol. Q. 56, 363–386. https://doi.org/10.7306/gq.1028 (2012).
Google Scholar
Jurkowska, A. & Świerczewska-Gładysz, E. New model of Si balance in the Late Cretaceous epicontinental European Basin. Global Planet. Change 186, 103108. https://doi.org/10.1016/j.gloplacha.2019.103108 (2020).
Google Scholar
Müller, R. D. et al. GPlates: Building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261. https://doi.org/10.1029/2018GC007584 (2018).
Google Scholar
Walaszczyk, I., Dubicka, Z., Olszewska-Nejbert, D. & Remin, Z. Integrated biostratigraphy of the Santonian through Maastrichtian (Upper Cretaceous) of extra-Carpathian Poland. Acta Geol. Pol. 66, 321–358. https://doi.org/10.1515/agp-2016-0016 (2016).
Google Scholar
Surlyk, F. et al. Upper Campanian-Maastrichtian holostratigraphy of the eastern Danish Basin. Cret. Res. 46, 232–256. https://doi.org/10.1016/j.cretres.2013.08.006 (2013).
Google Scholar
Tagliavento, M., Lauridsen, B. W. & Stemmerik, L. Episodic dysoxia during Late Cretaceous cyclic chalk-marl deposition—Evidence from framboidal pyrite distribution in the upper Maastrichtian Rørdal Mb., Danish Basin. Cret. Res. 106, 104223. https://doi.org/10.1016/j.cretres.2019.104223 (2020).
Google Scholar
Dubicka, Z., Wierzbowski, H. & Wierny, W. Oxygen and carbon isotope records of Upper Cretaceous foraminifera from Poland: Vital and microhabitat effects. Palaeogeogr. Palaeoclimatol. Palaeoecol. 500, 33–51. https://doi.org/10.1016/j.palaeo.2018.03.029 (2018).
Google Scholar
Klompmaker, A. A., Waljaard, N. A. & Fraaije, R. H. B. Ventral bite marks in Mesozoic ammonoids. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 245–257. https://doi.org/10.1016/j.palaeo.2009.06.013 (2009).
Google Scholar
Fraaye, R. H. B. Late Cretaceous swimming crabs: Radiation, migration, competition, and extinction. Acta Geol. Pol. 46, 269–278 (1996).
Caldwell, R. L. & Dingle, H. Stomatopods. Sci. Am. 234, 80–89 (1976).
Google Scholar
Dunstan, A. J., Ward, P. D. & Marshall, N. J. Vertical distribution and migration patterns of Nautilus pompilius. PLoS ONE 6, e16311. https://doi.org/10.1371/journal.pone.0016311 (2011).
Google Scholar
Ward, P., Dooley, F. & Barord, G. J. Nautilus: Biology, systematics, and paleobiology as viewed from 2015. Swiss J. Palaeontol. 135, 169–185. https://doi.org/10.1007/s13358-016-0112-7 (2016).
Google Scholar
Landman, N. H., Cobban, W. A. & Larson, N. L. Mode of life and habitat of scaphitid ammonites. Geobios 45, 87–98. https://doi.org/10.1016/j.geobios.2011.11.006 (2012).
Google Scholar
Peterman, D. J. et al. Syn vivo hydrostatic and hydrodynamic properties of scaphitid ammonoids from the U.S. Western Interior. Geobios 60, 79–98. https://doi.org/10.1016/j.geobios.2020.04.004 (2021).
Google Scholar
Tsujita, C. J. & Westermann, G. Ammonoid habitats and habits in the Western Interior Seaway: A case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 144, 135–160. https://doi.org/10.1016/S0031-0182(98)00090-X (1998).
Google Scholar
Fraaije, R. H. B., Van Bakel, B. W. M., Jagt, J. W. M. & Viegas, P. A. The rise of a novel, plankton-based marine ecosystem during the Mesozoic: A bottom-up model to explain new higher-tier invertebrate morphotypes. Boletín de la Sociedad Geol. Mexicana 70, 187–200. https://doi.org/10.18268/bsgm2018v70n1a11 (2018).
Google Scholar
Alldredge, A. L. & King, J. M. The distance demersal zooplankton migrate above the benthos: Implications for predation. Marine Biol. 84, 253–260. https://doi.org/10.1007/BF00392494 (1985).
Google Scholar
Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Pal. Electron. 4, 1–9 (2001).
Anderson, T. F. & Arthur, M. A. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleonvironmental problems. In Stable Isotopes in Sedimentary Geology, The Society of Economic Paleontologists and Mineralogists Short Course Vol. 10 (eds Arthur, M. A. et al.) 1–151 (SEPM, 1983). https://doi.org/10.2110/scn.83.01.0000.
Google Scholar
Coplen, T. B., Kendall, C. & Hopple, J. Comparison of stable isotope reference samples. Nature 302, 236–238. https://doi.org/10.1038/302236a0 (1983).
Google Scholar
McLennan, S. M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary process. Rev. Mineral. 21, 169–200 (1989).
Google Scholar
Webb, G. E. & Kamber, B. S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim. Cosmochim. Acta 64, 1557–1565. https://doi.org/10.1016/S0016-7037(99)00400-7 (2000).
Google Scholar
Source: Ecology - nature.com