in

Stochasticity in host-parasitoid models informs mechanisms regulating population dynamics

  • 1.

    Benincà, E., Ballantine, B., Ellner, S.P. & Huisman, J. Species fluctuations sustained by a cyclic succession at the edge of chaos. Proc. Natl. Acad. Sci. 112, 6389–6394 (2015).

  • 2.

    Lande, R. et al. Stochastic Population Dynamics in Ecology and Conservation (Oxford University Press, 2003).

  • 3.

    Bonsall, M. B. & Hastings, A. Demographic and environmental stochasticity in predator-prey metapopulation dynamics. J. Anim. Ecol. 73, 1043–1055 (2004).

    Article 

    Google Scholar 

  • 4.

    Nisbet, R. M. & Gurney, W. Modelling Fluctuating Populations: reprint of first Edition (1982) (Blackburn Press, 2003).

  • 5.

    Hening, A. & Nguyen, D. H. Stochastic Lotka–Volterra food chains. J. Math. Biol. 77(1), 135–163 (2018).

    MathSciNet 
    Article 

    Google Scholar 

  • 6.

    Khasminskii, R. et al. Long term behavior of solutions of the Lotka–Volterra system under small random perturbations. Ann. Appl. Probab. 11(3), 952–963 (2001).

    MathSciNet 
    Article 

    Google Scholar 

  • 7.

    Huang, W., Hauert, C. & Traulsen, A. Stochastic game dynamics under demographic fluctuations. Proc. Natl. Acad. Sci., 112(29), 9064–9069 (2015).

  • 8.

    Suvinthra, M. & Balachandran, K. Large deviations for the stochastic predator-prey model with nonlinear functional response. J. Appl. Probab. 54(2), 507 (2017).

    MathSciNet 
    Article 

    Google Scholar 

  • 9.

    Zou, X. & Wang, K. Optimal harvesting for a stochastic Lotka–Volterra predator-prey system with jumps and nonselective harvesting hypothesis. Optim. Control Appl. Methods 37(4), 641–662 (2016).

    MathSciNet 
    Article 

    Google Scholar 

  • 10.

    Larsen, A. E. Modeling multiple nonconsumptive effects in simple food webs: a modified Lotka–Volterra approach. Behav. Ecol. 23(5), 1115–1125 (2012).

    Article 

    Google Scholar 

  • 11.

    Singh, A. Stochastic dynamics of consumer-resource interactions. bioRxiv (2021).

  • 12.

    Bashkirtseva, I., Ryashko, L. & Tsvetkov, I. Analysis of stochastic phenomena in ricker-type population model with delay. In AIP Conference Proceedings, vol. 1895, p. 050003 (2017).

  • 13.

    Halley, J. M. & Iwasa, Y. Extinction rate of a population under both demographic and environmental stochasticity. Theor. Popul. Biol. 53, 1–15 (1998).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Hassell, M. P. (Oxford University Press, 2000).

  • 15.

    Gurney, W. S. C. & Nisbet, R. M. Ecological Dynamics (Oxford University Press, 1998).

  • 16.

    Murdoch, W. W., Briggs, C. J. & Nisbet, R. M. Consumer-Resouse Dynamics (Princeton University Press, 2003).

  • 17.

    Kakehashi, N., Suzuki, Y. & Iwasa, Y. Niche overlap of parasitoids in host-parasitoid systems: its consequence to single versus multiple introduction controversy in biological control. J. Appl. Ecol. 21, 115–131 (1984).

    Article 

    Google Scholar 

  • 18.

    May, R. M. & Hassell, M. P. The dynamics of multiparasitoid-host interactions. Am. Nat. 117(3), 234–261 (1981).

    MathSciNet 
    Article 

    Google Scholar 

  • 19.

    Hackett-Jones, E., Cobbold, C. & White, A. Coexistence of multiple parasitoids on a single host due to differences in parasitoid phenology. Theor. Ecol. 2(1), 19–31 (2009).

    Article 

    Google Scholar 

  • 20.

    van Velzen, E., Pérez-Vila, S. & Etienne, R. S. The role of within-host competition for coexistence in multiparasitoid-host systems. Am. Nat. 187(1), 48–59 (2016).

    Article 

    Google Scholar 

  • 21.

    Nicholson, A. & Bailey, V. A. The balance of animal populations. Part 1. Proc. Zool. Soc. Lond. 3, 551–598 (1935).

    Article 

    Google Scholar 

  • 22.

    Singh, A., Murdoch, W. W. & Nisbet, R. M. Skewed attacks, stability, and host suppression. Ecology 90(6), 1679–1686 (2009).

    Article 

    Google Scholar 

  • 23.

    Bešo, E., Kalabušić, S., Mujić, N. & Pilav, E. Stability of a certain class of a host-parasitoid models with a spatial refuge effect. J. Biol. Dyn. 14(1), 1–31 (2020).

    MathSciNet 
    Article 

    Google Scholar 

  • 24.

    Taylor, A. D. Heterogeneity in host-parasitoid interactions: ‘aggregation of risk’ and the (cv^2>1) rule. Trends Ecol. Evolu. 8, 400–405 (1993).

  • 25.

    Hassell, M. P., May, R. M., Pacala, S. W. & Chesson, P. L. The persistence of host-parasitoid associations in patchy environments. I. A general criterion. Am. Nat. 138, 568–583 (1991).

    Article 

    Google Scholar 

  • 26.

    Pacala, S. W. & Hassell, M. P. The persistence of host- parasitoid associations in patchy environments. II. Evaluation of field data. Am. Nat. 138, 584–605 (1991).

    Article 

    Google Scholar 

  • 27.

    Bernstein, C. Density dependence and the stability of host-parasitoid systems. Oikos 47, 176–180 (1986).

    Article 

    Google Scholar 

  • 28.

    Free, C., Beddington, J. & Lawton, J. On the inadequacy of simple models of mutual interference for parasitism and predation. J. Anim. Ecol. 46, 543–554 (1977).

    Article 

    Google Scholar 

  • 29.

    Rogers, D. & Hassell, M. General models for insect parasite and predator searching behaviour: interference. J. Anim. Ecol. 43, 239–253 (1974).

    Article 

    Google Scholar 

  • 30.

    Reeve, J. D., Cronin, J. T. & Strong, D. R. Parasitoid aggregation and the stabilization of a salt marsh host- parasitoid system. Ecology 75, 288–295 (1994).

    Article 

    Google Scholar 

  • 31.

    Rohani, P., Godfray, H. C. J. & Hassell, M. P. Aggregation and the dynamics of host-parasitoid systems: A discrete-generation model with within-generation redistribution. Am. Nat. 144(3), 491–509 (1994).

    Article 

    Google Scholar 

  • 32.

    May, R. M. Host-parasitoid systems in patchy environments: A phenomenological model. J. Anim. Ecol. 47, 833–844 (1978).

    Article 

    Google Scholar 

  • 33.

    Singh, A. & Nisbet, R. M. Semi-discrete host-parasitoid models. J. Theor. Biol. 247(4), 733–742 (2007).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 34.

    Singh, A. Population dynamics of multi-host communities attacked by a common parasitoid, bioRxiv (2021).

  • 35.

    Singh, A. & Emerick, B. Hybrid systems framework for modeling host-parasitoid population dynamics. In 2020 59th IEEE Conference on Decision and Control (CDC), 4628–4633 (2020).

  • 36.

    Lane, S. D., St, C. M. Mary, & Getz, W. M. Coexistence of attack-limited parasitoids sequentially exploiting the same resource and its implications for biological control. Ann. Zool. Fenn. 43, 17–34 (2006).

    Google Scholar 

  • 37.

    Pedersen, B. S. & Mills, N. J. Single vs. multiple introduction in biological control: the roles of parasitoid efficiency, antagonism and niche overlap. J. Appl. Ecol. 41(5), 973–984 (2004).

    Article 

    Google Scholar 

  • 38.

    Abram, P. K., Brodeur, J., Burte, V. & Boivin, G. Parasitoid-induced host egg abortion; an underappreciated component of biological control services provided by egg parasitoids. Biol. Control 98, 52–60 (2016).

    Article 

    Google Scholar 

  • 39.

    Jervis, M. A., Hawkin, B. A. & Kidd, N. A. C. The usefulness of destructive host-feeding parasitoids in classical biological control: Theory and observation conflict. Ecol. Entomol. 21(1), 41–46 (1996).

    Article 

    Google Scholar 

  • 40.

    Okuyama, T. Density-dependent distribution of parasitism risk among underground hosts. Bull. Entomol. Res. 109(4), 528–533 (2019).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Cobbold, C. A., Roland, J. & Lewis, M. A. The impact of parasitoid emergence time on host-parastioid population dynamics. Theor. Popul. Biol. 75(2), 201–215 (2009).

    Article 

    Google Scholar 

  • 42.

    Liere, H., Jackson, D. & Vandermeer, J. Ecological complexity in a coffee agroecosystem: Spatial heterogeneity, popoulation persistence and biological control. PLoS One 7(9), e45508 (2012).

  • 43.

    Zoroa, N., Lesigne, E., Fernandez-Saez, M.J., Zoroa, P. & Casas, J. The coupon collector urn model with unequal probabilities in ecology and evolution, J. R. Soc. Interface 14, 20160643 (2017).

  • 44.

    Singh, A. & Emerick, B. Generalized stability conditions for host-parasitoid population dynamics: Implications for biological control. Ecol. Model. 456, 109656 (2021).

  • 45.

    Ledder, G. Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems (Springer Science & Business Media, 2013).

  • 46.

    Elaydi, S. An Introduction to Difference Equations (Springer, 1996).

  • 47.

    Gajic, Z. & Qureshi, M. T. J. Lyapunov matrix equation in system stability and control. (Courier Corporation, 2008).

  • 48.

    Singh, A. & Nisbet, R. M. Variation in risk in single-species discrete-time models. Math. Biosci. Eng. 5, 859–875 (2008).

    MathSciNet 
    Article 

    Google Scholar 

  • 49.

    Emerick, B. K. & Singh, A. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models. Math. Biosci. 272, 54–63 (2016).

    MathSciNet 
    Article 

    Google Scholar 

  • 50.

    Pachepsky, E., Nisbet, R. M. & Murdoch, W. W. Between discrete and continuous: Consumer-resource dynamics with synchronized reproduction. Ecology 89(1), 280–288 (2007).

    Article 

    Google Scholar 

  • 51.

    Emerick, B. K., Singh, A & Chhetri, S. R. Global redistribution and local migration in semi-discrete host-parasitoid population dynamic models. Math. Biosci. 327, 108409 (2020).

  • 52.

    Rogers, D. J. Random searching and incest population models. J. Anim. Ecol. 41, 369–383 (1972).

    Article 

    Google Scholar 

  • 53.

    Hassell, M. P. & Comins, H. N. Sigmoid functional responses and population stability. Theor. Popul. Biol. 14, 62–66 (1978).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Fernández-arhex, V. & Corley, J. C. The functional response of parasitoids and its implications for biological control. Biocontrol Sci. Technol. 13(4), 403–413 (2003).

    Article 

    Google Scholar 

  • 55.

    Okuyama, T. Dilution effects enhance variation in parasitism risk among hosts and stabilize host-parasitoid population dynamics. Ecol. Model. 441, 109425 (2021).


  • Source: Ecology - nature.com

    Smarter regulation of global shipping emissions could improve air quality and health outcomes

    Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism