Vogel, J. Recyling of carbon in a forest environment. Oecol. Plant. 13, 89–94 (1978).
Medina, E. & Minchin, P. Stratification of δ 13C values of leaves in Amazonian rain forests. Oecologia 45, 377–378 (1980).
Google Scholar
Ehleringer, J. R., Field, C. B., Lin, Z. & Kuo, C. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 70, 520–526 (1986).
Google Scholar
Medina, E., Sternberg, L. & Cuevas, E. Vertical stratification of δ13C values in closed natural and plantation forests in the Luquillo mountains, Puerto Rico. Oecologia 87, 369–372 (1991).
Google Scholar
Graham, H. V. et al. Isotopic characteristics of canopies in simulated leaf assemblages. Geochim. Cosmochim. Acta 144, 82–95 (2014).
Google Scholar
Buchmann, N., Kao, W.-Y. & Ehleringer, J. Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Oecologia 110, 109–119 (1997).
Google Scholar
Sternberg, L. D. S. L., Mulkey, S. S. & Wright, S. J. Oxygen isotope ratio stratification in a tropical moist forest. Oecologia 81, 51–56 (1989).
Google Scholar
Ometto, J. P. H. B. et al. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79, 251–274 (2006).
Google Scholar
van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Archaeol. Sci. 18, 249–259 (1991).
Google Scholar
Houle, A. & Wrangham, R. W. Contest competition for fruit and space among wild chimpanzees in relation to the vertical stratification of metabolizable energy. Anim. Behav. 175, 231–246 (2021).
Google Scholar
Roberts, P., Blumenthal, S. A., Dittus, W., Wedage, O. & Lee-Thorp, J. A. Stable carbon, oxygen, and nitrogen, isotope analysis of plants from a South Asian tropical forest: Implications for primatology. Am. J. Primatol. 79, e22656 (2017).
Google Scholar
Barbour, M. M. Stable oxygen isotope composition of plant tissue: A review. Funct. Plant Biol. 34, 83–94 (2007).
Google Scholar
Cernusak, L. A. et al. Stable isotopes in leaf water of terrestrial plants. Plant Cell Environ. 39, 1087–1102 (2016).
Google Scholar
Ometto, J. P. H., Flanagan, L. B., Martinelli, L. A. & Ehleringer, J. R. Oxygen isotope ratios of waters and respired CO2 in Amazonian forest and pasture ecosystems. Ecol. Appl. 15, 58–70 (2005).
Google Scholar
Yakir, D. Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates. Plant Cell Environ. 15, 1005–1020 (1992).
Google Scholar
Wania, R., Hietz, P. & Wanek, W. Natural 15N abundance of epiphytes depends on the position within the forest canopy: Source signals and isotope fractionation. Plant Cell Environ. 25, 581–589 (2002).
Google Scholar
Blumenthal, S. A., Rothman, J. M., Chritz, K. L. & Cerling, T. E. Stable isotopic variation in tropical forest plants for applications in primatology. Am. J. Primatol. 78, 1041–1054 (2016).
Google Scholar
Schleser, G. H. & Jayasekera, R. 13C-variations of leaves in forests as an indication of reassimilated CO2 from the soil. Oecologia 65, 536–542 (1985).
Google Scholar
van der Merwe, N. J. & Medina, E. Photosynthesis and 13C12C ratios in Amazonian rain forests. Geochim. Cosmochim. Acta 53, 1091–1094 (1989).
Google Scholar
Chazdon, R. L. & Pearcy, R. W. The importance of sunflecks for forest understory plants. Bioscience 41, 760–766 (1991).
Google Scholar
Lambers, H., Chapin, F. S. & Pons, T. L. Plant Physiological Ecology (Springer New York, 2008) https://doi.org/10.1007/978-0-387-78341-3.
Google Scholar
Hellkvist, J., Richards, G. P. & Jarvis, P. G. Vertical gradients of water potential and tissue water relations in sitka spruce trees measured with the pressure chamber. J. Appl. Ecol. 11, 637–667 (1974).
Google Scholar
Ambrose, A. R., Sillett, S. C. & Dawson, T. E. Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods. Plant Cell Environ. 32, 743–757 (2009).
Google Scholar
Peltoniemi, M. S., Duursma, R. A. & Medlyn, B. E. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies. Tree Physiol. 32, 510–519 (2012).
Google Scholar
Araguás-Araguás, L., Froehlich, K. & Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process. 14, 1341–1355 (2000).
Google Scholar
Gonfiantini, R., Roche, M.-A., Olivry, J.-C., Fontes, J.-C. & Zuppi, G. M. The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 181, 147–167 (2001).
Google Scholar
Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992 (2009).
Google Scholar
Guenni, O., Romero, E., Guédez, Y., Bravo de Guenni, L. & Pittermann, J. Influence of low light intensity on growth and biomass allocation, leaf photosynthesis and canopy radiation interception and use in two forage species of Centrosema (DC.) Benth. Grass Forage Sci. 73, 967–978 (2018).
Google Scholar
Ryan, M. G. & Yoder, B. J. Hydraulic limits to tree height and tree growth. Bioscience 47, 235–242 (1997).
Google Scholar
Dunham, N. T. & Lambert, A. L. The role of leaf toughness on foraging efficiency in Angola black and white colobus monkeys (Colobus angolensis palliatus). Am. J. Phys. Anthropol. 161, 343–354 (2016).
Google Scholar
Poorter, L., van de Plassche, M., Willems, S. & Boot, R. G. A. Leaf traits and herbivory rates of tropical tree species differing in successional status. Plant Biol. 6, 746–754 (2004).
Google Scholar
Sponheimer, M. et al. Using carbon isotopes to track dietary change in modern, historical, and ancient primates. Am. J. Phys. Anthropol. 140, 661–670 (2009).
Google Scholar
Nelson, S. V. Chimpanzee fauna isotopes provide new interpretations of fossil ape and hominin ecologies. Proc. R. Soc. B 280, 20132324 (2013).
Google Scholar
Krigbaum, J., Berger, M. H., Daegling, D. J. & McGraw, W. S. Stable isotope canopy effects for sympatric monkeys at Taï Forest, Côte d’Ivoire. Biol. Lett. 9, 20130466 (2013).
Google Scholar
Oelze, V. M., Head, J. S., Robbins, M. M., Richards, M. & Boesch, C. Niche differentiation and dietary seasonality among sympatric gorillas and chimpanzees in Loango National Park (Gabon) revealed by stable isotope analysis. J. Hum. Evol. 66, 95–106 (2014).
Google Scholar
McGraw, W. S. Positional behavior of Cercopithecus petaurista. Int. J. Primatol. 21, 157–182 (2000).
Google Scholar
McGraw, W. S. Comparative locomotion and habitat use of six monkeys in the Tai Forest, Ivory Coast. Am. J. Primatol. 105, 493–510 (1998).
Google Scholar
Carter, M. L. & Bradbury, M. W. Oxygen isotope ratios in primate bone carbonate reflect amount of leaves and vertical stratification in the diet. Am. J. Primatol. 78, 1086–1097 (2016).
Google Scholar
Bryant, J. D. & Froelich, P. N. A model of oxygen isotope fractionation in body water of large mammals. Geochim. Cosmochim. Acta 59, 4523–4537 (1995).
Google Scholar
Sharma, N. et al. Watering holes: The use of arboreal sources of drinking water by Old World monkeys and apes. Behav. Proc. 129, 18–26 (2016).
Google Scholar
Wittig, R. M. Taï chimpanzees. In Encyclopedia of Animal Cognition and Behavior (eds Vonk, J. & Shackelford, T.) 1–7 (Springer International Publishing, 2017) https://doi.org/10.1007/978-3-319-47829-6_1564-1.
Google Scholar
Nelson, S. V. & Rook, L. Isotopic reconstructions of habitat change surrounding the extinction of Oreopithecus, the last European ape. Am. J. Phys. Anthropol. 160, 254–271 (2016).
Google Scholar
Ryan, M. G., Phillips, N. & Bond, B. J. The hydraulic limitation hypothesis revisited. Plant Cell Environ. 29, 367–381 (2006).
Google Scholar
Bachofen, C., D’Odorico, P. & Buchmann, N. Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir. Oecologia 192, 323–339 (2020).
Google Scholar
Chazdon, R. L., Williams, K. & Field, C. B. Interactions between crown structure and light environment in five rain forest piper species. Am. J. Bot. 75, 1459–1471 (1988).
Google Scholar
Ambrose, A. R. et al. Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees. Oecologia 182, 713–730 (2016).
Google Scholar
Voigt, C. C. Insights into strata use of forest animals using the ‘canopy effect’. Biotropica 42, 634–637 (2010).
Google Scholar
Ometto, J. P. H. B. et al. Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin. Brazil. Glob. Biogeochem. Cycles 16, 56-1-56–10 (2002).
Loudon, J. E. et al. Stable isotope data from bonobo (Pan paniscus) faecal samples from the Lomako Forest Reserve, Democratic Republic of the Congo. Afr. J. Ecol. 57, 437–442 (2019).
Google Scholar
Medina, E., Klinge, H., Jordan, C. & Herrera, R. Soil respiration in Amazonian rain forests in the Rio Negro Basin. Flora 170, 240–250 (1980).
Google Scholar
Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).
Google Scholar
Niinemets, Ü. & Tenhunen, J. D. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 20, 845–866 (1997).
Google Scholar
Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2, 369–404 (1971).
Google Scholar
Onoda, Y., Schieving, F. & Anten, N. P. R. Effects of light and nutrient availability on leaf mechanical properties of plantago major: A conceptual approach. Ann. Bot. 101, 727–736 (2008).
Google Scholar
Dasilva, G. L. Diet of Colobus polykomos on Tiwai Island: Selection of food in relation to its seasonal abundance and nutritional quality. Int. J. Primatol. 15, 655–680 (1994).
Google Scholar
Rothman, J. M., Chapman, C. A. & Pell, A. N. Fiber-bound nitrogen in gorilla diets: Implications for estimating dietary protein intake of primates. Am. J. Primatol. 70, 690–694 (2008).
Google Scholar
Ganzhorn, J. U. et al. The importance of protein in leaf selection of folivorous primates. Am. J. Primatol. 79, e22550 (2017).
Google Scholar
Tejada, J. V. et al. Comparative isotope ecology of western Amazonian rainforest mammals. Proc. Natl. Acad. Sci. USA 117, 26263–26272 (2020).
Google Scholar
Cernusak, L. A. et al. Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct. Plant Biol. 36, 199–213 (2009).
Google Scholar
Fannin, L. D. & McGraw, W. S. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour?. Folia Primatol. 91, 219–227 (2020).
Google Scholar
Crowley, B. E., Melin, A. D., Yeakel, J. D. & Dominy, N. J. Do oxygen isotope values in collagen reflect the ecology and physiology of neotropical mammals?. Front. Ecol. Evol. 3, 127 (2015).
Google Scholar
DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1981).
Google Scholar
Lemoine, R. et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4, 272 (2013).
Google Scholar
Anderson, D. L., Koomjian, W., French, B., Altenhoff, S. R. & Luce, J. Review of rope-based access methods for the forest canopy: Safe and unsafe practices in published information sources and a summary of current methods. Methods Ecol. Evol. 6, 865–872 (2015).
Google Scholar
Source: Ecology - nature.com