European Commission. COM(2014) A policy framework for climate and energy in the period from 2020 to 2030. 1–18 (2012).
Miranda, T. et al. Characterization and combustion of olive pomace and forest residue pellets. Fuel Process. Technol. 103, 91–96 (2012).
Google Scholar
Paiano, A. & Lagioia, G. Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case. Energy Policy 91, 161–173 (2020).
Google Scholar
Mehmood, M. A. et al. Biomass production for bioenergy using marginal lands. Sustain. Prod. Consum. 9, 3–21 (2017).
Google Scholar
Italian National Institute of Statistics ISTAT. Cultivations. At http://dati.istat.it/Index.aspx?DataSetCode=DCSP_COLTIVAZIONI (2020).
Barbanera, M. et al. Characterization of pellets from mixing olive pomace and olive tree pruning. Renew. Energy 88, 185–191 (2016).
Google Scholar
Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30, 219–230 (2004).
Google Scholar
Telmo, C. & Lousada, J. Heating values of wood pellets from different species. Biomass Bioenerg. 35, 2634–2639 (2011).
Google Scholar
Zeng, W., Tang, S. & Xiao, Q. Calorific values and ash contents of different parts of Masson pine trees in southern China. J. For. Res. 25, 779–786 (2014).
Google Scholar
Yan, P., Xu, L. & He, N. Variation in the calorific values of different plants organs in China. PLoS ONE 13, e0199762 (2018).
Google Scholar
FAO. Crops. At http://www.fao.org/faostat/en/#data/QC (2019).
Gorzynik-Debicka, M. et al. Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci. 19, 686 (2018).
Google Scholar
Various authors. Handbook for a sustainable management of the olive groves. At https://olive4climate.eu/wp-content/uploads/Olive-4-Climate-Handbook.pdf (2017).
Beccali, M., Columba, P., D’Alberti, V. & Franzitta, V. Assessment of bioenergy potential in Sicily: A GIS-based support methodology. Biomass Bioenerg. 33, 79–87 (2009).
Google Scholar
Gucci, R. & Cantini, C. Pruning and Training Systems for Modern Olive Growing (Csiro Publishing, Clayton, 2000).
Google Scholar
Fernandez, E. R. et al. Evolution and sustainability of the olive production systems. Options Méditerranéennes Séries A Mediterranean Seminars 106, 11–42 (2013).
Di Blasi, C., Tanzi, V. & Lanzetta, M. A study on the production of agricultural residues in Italy. Biomass Bioenerg. 12, 321–331 (1997).
Google Scholar
Brunori, A. et al. Biomass and volume modeling in Olea europaea L. cv “Leccino”. Trees Struct. Funct. 31, 1859–1874 (2017).
Google Scholar
Alves, C. A. et al. Gaseous and speciated particulate emissions from the open burning of wastes from tree pruning. Atmos. Res. 226, 110–121 (2019).
Google Scholar
Repullo, M. A., Carbonell, R., Hidalgo, J., Rodríguez-Lizana, A. & Ordóñez, R. Using olive pruning residues to cover soil and improve fertility. Soil Tillage Res. 124, 36–46 (2012).
Google Scholar
Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (2018).
Nardino, M. et al. Annual and monthly carbon balance in an intensively managed Mediterranean olive orchard. Photosynthetica 51, 63–74 (2013).
Google Scholar
Romero-García, J. M. et al. Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol. 159, 421–432 (2014).
Google Scholar
Werther, J., Saenger, M., Hartge, E. U., Ogada, T. & Siagi, Z. Combustion of agricultural residues. Prog. Energy Combust. Sci. 26, 1–27 (2000).
Google Scholar
Lehtikangas, P. Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenerg. 20, 351–360 (2001).
Google Scholar
Motisi, A. et al. Le cultivar di Olivo (Olea europaea L.) siciliane della collezione costituita dal dipartimento di colture arboree di Palermo presso l’azienda ‘Campo Carboj’ dell’Ente di Sviluppo Agricolo della regione Siciliana. Italus Hortus 13, 137–144 (2006).
Caruso, T. & D’Anna, F. Catalogo accessioni di Olivo Pesco Fragolina di bosco. Fondo Europeo agricolo per lo sviluppo rurale: l’Europa investe nelle zone rurali. (Tipografia Paruzzo Caltanissetta, 2015).
Caruso, T., Cartabellotta, D. & Antonio, M. Cultivar Di Olivo Siciliane. Identificazione, Validazione, Caratterizzazione morfologica e Molecolare e Qualità Degli Oli. Contiene manuale per la caratterizzazione primaria di cultivar di olivo siciliane. Palermo, Italy (2007).
UNI EN ISO 14775 Solid Biofuels – Determination Of Ash Content. 14775 Solid Biofuels – Determination Of Ash Content (2010).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/ (2020).
Sirna, A. LCA methodology in two self-consumption wood energy chains. PhD thesis, University of Tuscia, Italy (2012).
Requejo, A., Feria, M. J., Vargas, F. & Rodríguez, A. Total use of olive tree prunings by means of hydrothermal and combustion processes. BioResources 7, 118–134 (2012).
Google Scholar
Cuevas, M. et al. Drying kinetics and effective water diffusivities in olive stone and olive-tree pruning. Renew. Energy 132, 911–920 (2019).
Google Scholar
Garcia-Maraver, A., Rodriguez, M. L., Serrano-Bernardo, F., Diaz, L. F. & Zamorano, M. Factors affecting the quality of pellets made from residual biomass of olive trees. Fuel Process. Technol. 129, 1–7 (2015).
Google Scholar
Lama-Muñoz, A. et al. Characterization of the lignocellulosic and sugars composition of different olive leaves cultivars. Food Chem. 329, 127153 (2020).
Google Scholar
Garcia-Maraver, A., Salvachúa, D., Martínez, M. J., Diaz, L. F. & Zamorano, M. Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees. Waste Manag. 33, 2245–2249 (2013).
Google Scholar
Telmo, C. & Lousada, J. The explained variation by lignin and extractive contents on higher heating value of wood. Biomass Bioenerg. 35, 1663–1667 (2011).
Google Scholar
Demirbaş, A. Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77, 1117–1120 (1998).
Google Scholar
Demirbaş, A. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor. Exploit. 20, 105–111 (2002).
Google Scholar
García-Maraver, A., Terron, L. C., Ramos-Ridao, A. & Zamorano, M. Effects of mineral contamination on the ash content of olive tree residual biomass. Biosyst. Eng. 118, 167–173 (2014).
Google Scholar
Velázquez-Martí, B., Fernández-González, E., López-Cortés, I. & Salazar-Hernández, D. M. Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass Bioenerg. 35, 3453–3464 (2011).
Google Scholar
Spinelli, R. & Picchi, G. Industrial harvesting of olive tree pruning residue for energy biomass. Bioresour. Technol. 101, 730–735 (2010).
Google Scholar
García Martín, J. F. et al. Energetic valorisation of olive biomass: Olive-tree pruning, olive stones and pomaces. Processes 8, 511 (2020).
Google Scholar
Regione Sicilia, Dipartimento dell’Energia. Rapporto Energia 2015 Monitoraggio sull’energia in Sicilia. 1–168. At http://www.catastoenergetico.regione.sicilia.it/D/NEWS/Rapporto%20Energia%202015.pdf (2015).
Source: Ecology - nature.com