in

Study of energetic properties of different tree organs in six Olea europaea L. cultivars

  • 1.

    European Commission. COM(2014) A policy framework for climate and energy in the period from 2020 to 2030. 1–18 (2012).

  • 2.

    Miranda, T. et al. Characterization and combustion of olive pomace and forest residue pellets. Fuel Process. Technol. 103, 91–96 (2012).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Paiano, A. & Lagioia, G. Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case. Energy Policy 91, 161–173 (2020).

    Article 

    Google Scholar 

  • 4.

    Mehmood, M. A. et al. Biomass production for bioenergy using marginal lands. Sustain. Prod. Consum. 9, 3–21 (2017).

    Article 

    Google Scholar 

  • 5.

    Italian National Institute of Statistics ISTAT. Cultivations. At http://dati.istat.it/Index.aspx?DataSetCode=DCSP_COLTIVAZIONI (2020).

  • 6.

    Barbanera, M. et al. Characterization of pellets from mixing olive pomace and olive tree pruning. Renew. Energy 88, 185–191 (2016).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30, 219–230 (2004).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Telmo, C. & Lousada, J. Heating values of wood pellets from different species. Biomass Bioenerg. 35, 2634–2639 (2011).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Zeng, W., Tang, S. & Xiao, Q. Calorific values and ash contents of different parts of Masson pine trees in southern China. J. For. Res. 25, 779–786 (2014).

    Article 

    Google Scholar 

  • 10.

    Yan, P., Xu, L. & He, N. Variation in the calorific values of different plants organs in China. PLoS ONE 13, e0199762 (2018).

    Article 

    Google Scholar 

  • 11.

    FAO. Crops. At http://www.fao.org/faostat/en/#data/QC (2019).

  • 12.

    Gorzynik-Debicka, M. et al. Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci. 19, 686 (2018).

    Article 

    Google Scholar 

  • 13.

    Various authors. Handbook for a sustainable management of the olive groves. At https://olive4climate.eu/wp-content/uploads/Olive-4-Climate-Handbook.pdf (2017).

  • 14.

    Beccali, M., Columba, P., D’Alberti, V. & Franzitta, V. Assessment of bioenergy potential in Sicily: A GIS-based support methodology. Biomass Bioenerg. 33, 79–87 (2009).

    Article 

    Google Scholar 

  • 15.

    Gucci, R. & Cantini, C. Pruning and Training Systems for Modern Olive Growing (Csiro Publishing, Clayton, 2000).

    Book 

    Google Scholar 

  • 16.

    Fernandez, E. R. et al. Evolution and sustainability of the olive production systems. Options Méditerranéennes Séries A Mediterranean Seminars 106, 11–42 (2013).

    Google Scholar 

  • 17.

    Di Blasi, C., Tanzi, V. & Lanzetta, M. A study on the production of agricultural residues in Italy. Biomass Bioenerg. 12, 321–331 (1997).

    Article 

    Google Scholar 

  • 18.

    Brunori, A. et al. Biomass and volume modeling in Olea europaea L. cv “Leccino”. Trees Struct. Funct. 31, 1859–1874 (2017).

    Article 

    Google Scholar 

  • 19.

    Alves, C. A. et al. Gaseous and speciated particulate emissions from the open burning of wastes from tree pruning. Atmos. Res. 226, 110–121 (2019).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Repullo, M. A., Carbonell, R., Hidalgo, J., Rodríguez-Lizana, A. & Ordóñez, R. Using olive pruning residues to cover soil and improve fertility. Soil Tillage Res. 124, 36–46 (2012).

    Article 

    Google Scholar 

  • 21.

    Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (2018).

  • 22.

    Nardino, M. et al. Annual and monthly carbon balance in an intensively managed Mediterranean olive orchard. Photosynthetica 51, 63–74 (2013).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Romero-García, J. M. et al. Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol. 159, 421–432 (2014).

    Article 

    Google Scholar 

  • 24.

    Werther, J., Saenger, M., Hartge, E. U., Ogada, T. & Siagi, Z. Combustion of agricultural residues. Prog. Energy Combust. Sci. 26, 1–27 (2000).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Lehtikangas, P. Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenerg. 20, 351–360 (2001).

    Article 

    Google Scholar 

  • 26.

    Motisi, A. et al. Le cultivar di Olivo (Olea europaea L.) siciliane della collezione costituita dal dipartimento di colture arboree di Palermo presso l’azienda ‘Campo Carboj’ dell’Ente di Sviluppo Agricolo della regione Siciliana. Italus Hortus 13, 137–144 (2006).

    Google Scholar 

  • 27.

    Caruso, T. & D’Anna, F. Catalogo accessioni di Olivo Pesco Fragolina di bosco. Fondo Europeo agricolo per lo sviluppo rurale: l’Europa investe nelle zone rurali. (Tipografia Paruzzo Caltanissetta, 2015).

    Google Scholar 

  • 28.

    Caruso, T., Cartabellotta, D. & Antonio, M. Cultivar Di Olivo Siciliane. Identificazione, Validazione, Caratterizzazione morfologica e Molecolare e Qualità Degli Oli. Contiene manuale per la caratterizzazione primaria di cultivar di olivo siciliane. Palermo, Italy (2007).

  • 29.

    UNI EN ISO 14775 Solid Biofuels – Determination Of Ash Content. 14775 Solid Biofuels – Determination Of Ash Content (2010).

  • 30.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/ (2020).

  • 31.

    Sirna, A. LCA methodology in two self-consumption wood energy chains. PhD thesis, University of Tuscia, Italy (2012).

  • 32.

    Requejo, A., Feria, M. J., Vargas, F. & Rodríguez, A. Total use of olive tree prunings by means of hydrothermal and combustion processes. BioResources 7, 118–134 (2012).

    CAS 

    Google Scholar 

  • 33.

    Cuevas, M. et al. Drying kinetics and effective water diffusivities in olive stone and olive-tree pruning. Renew. Energy 132, 911–920 (2019).

    Article 

    Google Scholar 

  • 34.

    Garcia-Maraver, A., Rodriguez, M. L., Serrano-Bernardo, F., Diaz, L. F. & Zamorano, M. Factors affecting the quality of pellets made from residual biomass of olive trees. Fuel Process. Technol. 129, 1–7 (2015).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Lama-Muñoz, A. et al. Characterization of the lignocellulosic and sugars composition of different olive leaves cultivars. Food Chem. 329, 127153 (2020).

    Article 

    Google Scholar 

  • 36.

    Garcia-Maraver, A., Salvachúa, D., Martínez, M. J., Diaz, L. F. & Zamorano, M. Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees. Waste Manag. 33, 2245–2249 (2013).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Telmo, C. & Lousada, J. The explained variation by lignin and extractive contents on higher heating value of wood. Biomass Bioenerg. 35, 1663–1667 (2011).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Demirbaş, A. Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77, 1117–1120 (1998).

    Article 

    Google Scholar 

  • 39.

    Demirbaş, A. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor. Exploit. 20, 105–111 (2002).

    Article 

    Google Scholar 

  • 40.

    García-Maraver, A., Terron, L. C., Ramos-Ridao, A. & Zamorano, M. Effects of mineral contamination on the ash content of olive tree residual biomass. Biosyst. Eng. 118, 167–173 (2014).

    Article 

    Google Scholar 

  • 41.

    Velázquez-Martí, B., Fernández-González, E., López-Cortés, I. & Salazar-Hernández, D. M. Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass Bioenerg. 35, 3453–3464 (2011).

    Article 

    Google Scholar 

  • 42.

    Spinelli, R. & Picchi, G. Industrial harvesting of olive tree pruning residue for energy biomass. Bioresour. Technol. 101, 730–735 (2010).

    CAS 
    Article 

    Google Scholar 

  • 43.

    García Martín, J. F. et al. Energetic valorisation of olive biomass: Olive-tree pruning, olive stones and pomaces. Processes 8, 511 (2020).

    Article 

    Google Scholar 

  • 44.

    Regione Sicilia, Dipartimento dell’Energia. Rapporto Energia 2015 Monitoraggio sull’energia in Sicilia. 1–168. At http://www.catastoenergetico.regione.sicilia.it/D/NEWS/Rapporto%20Energia%202015.pdf (2015).


  • Source: Ecology - nature.com

    Countering climate change with cool pavements

    Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages