in

Submicron polymer particles may mask the presence of toxicants in wastewater effluents probed by reporter gene containing bacteria

  • 1.

    Pivokonsky, M. et al. Occurrence of microplastics in raw and treated drinking water. Sci. Total. Environ. 643, 1644–1651 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Courtene-Jones, W., Quinn, B., Gary, S. F., Mogg, A. O. & Narayanaswamy, B. E. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the rockall trough, North Atlantic Ocean. Environ. Pollut. 231, 271–280 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Koongolla, J. B. et al. Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulf, South China Sea. Environ. Pollut. 258, 113734 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Qu, M. et al. Nanopolystyrene at predicted environmental concentration enhances microcystin-LR toxicity by inducing intestinal damage in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 183, 109568 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Li, Y. et al. Low level of polystyrene microplastics decreases early developmental toxicity of phenanthrene on marine medaka (Oryzias melastigma). J. Hazard. Mater. 385, 121586 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Shao, H. & Wang, D. Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans. Environ. Pollut. 258, 113649 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Sørensen, L., Rogers, E., Altin, D., Salaberria, I. & Booth, A. M. Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions. Environ. Pollut. 258, 113844 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Lee, K.-W., Shim, W. J., Kwon, O. Y. & Kang, J.-H. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environ. Sci. Technol. 47, 11278–11283 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Sun, X. et al. Toxicities of polystyrene nano-and microplastics toward marine bacterium Halomonas alkaliphila. Sci. Total. Environ. 642, 1378–1385 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Ivask, A. et al. Genome-wide bacterial toxicity screening uncovers the mechanisms of toxicity of a cationic polystyrene nanomaterial. Environ. Sci. Technol. 46, 2398–2405 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Heinlaan, M. et al. Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Sci. Total. Environ. 707, 136073 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Miyazaki, J. et al. Bacterial toxicity of functionalized polystyrene latex nanoparticles toward Escherichia coli. Adv. Mat. Res. 699, 672–677 (2013).

    CAS 

    Google Scholar 

  • 14.

    Kwon, Y.-N. & Leckie, J. O. Hypochlorite degradation of crosslinked polyamide membranes: II. Changes in hydrogen bonding behavior and performance. J. Membr. Sci. 282, 456–464 (2006).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Ateia, M., Kanan, A. & Karanfil, T. Microplastics release precursors of chlorinated and brominated disinfection byproducts in water. Chemosphere 251, 126452 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Mammo, F., Amoah, I., Gani, K., Pillay, L., Ratha, S., Bux, F. & Kumari, S. Microplastics in the environment: Interactions with microbes and chemical contaminants. Sci. Total. Environ. 743, 140518 (2020).

  • 18.

    Engler, R. E. The complex interaction between marine debris and toxic chemicals in the ocean. Environ. Sci. Technol. 46, 12302–12315 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Mattsson, K., Jocic, S., Doverbratt, I. & Hansson, L.-A. An emerging matter of environmental urgency. In Microplastic contamination in aquatic environments (ed. Zeng, E.) 379–399 (Elsevier, 2018).

    Google Scholar 

  • 20.

    Sumampouw, O. J. & Risjani, Y. Bacteria as indicators of environmental pollution. Environment 51, 52 (2014).

    Google Scholar 

  • 21.

    Hassan, S. H. et al. Real-time monitoring of water quality of stream water using sulfur-oxidizing bacteria as bio-indicator. Chemosphere 223, 58–63 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Bowdre, J. H. & Krieg, N. R. Water quality monitoring: bacteria as indicators (Virginia Water Resources Research Center, 1974).

    Google Scholar 

  • 23.

    Leusch, F. D. et al. Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses. Water Res. 50, 420–431 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Federation, Water Environmental and American Public Health Association (APHA). Standard methods for the examination of water and wastewater, Vol. 2 , Washington, DC, USA, (1915).

  • 25.

    Belkin, S. et al. A panel of stress-responsive luminous bacteria for the detection of selected classes of toxicants. Water Res. 31, 3009–3016 (1997).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Bhuvaneshwari, M. et al. Toxicity of chlorinated and ozonated wastewater effluents probed by genetically modified bioluminescent bacteria and cyanobacteria Spirulina sp. Water Res. 164, 114910 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Bianchi, E. et al. Evaluation of genotoxicity and cytotoxicity of water samples from the Sinos River Basin, southern Brazil. Braz. J. Biol. 75, 68–74 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Melamed, S. et al. A printed nanolitre-scale bacterial sensor array. Lab Chip 11, 139–146 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Jia, K., Eltzov, E., Toury, T., Marks, R. S. & Ionescu, R. E, A lower limit of detection for atrazine was obtained using bioluminescent reporter bacteria via a lower incubation temperature. Ecotoxicol. Environ. Saf. 84, 221–226 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Kim, B. C. & Gu, M. B, A bioluminescent sensor for high throughput toxicity classification. Biosens. Bioelectron 18, 1015–1021 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Gu, M. B., Min, J. & Kim, E. J, Toxicity monitoring and classification of endocrine disrupting chemicals (EDCs) using recombinant bioluminescent bacteria. Chemosphere 46, 289–294 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Woutersen, M., Belkin, S., Brouwer, B., van Wezel, A. P. & Heringa, M. B, Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources?. Anal Bioanal Chem 4, 915–929 (2011).

    Article 
    CAS 

    Google Scholar 

  • 33.

    Manivannan, B. et al. Water toxicity evaluations: comparing genetically modified bioluminescent bacteria and CHO cells as biomonitoring tools. Ecotoxicol. Environ. Saf. 203, 110984 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Gambardella, C. et al. Microplastics do not affect standard ecotoxicological endpoints in marine unicellular organisms. Mar. Pollut. Bull. 143, 140–143 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Magnusson, K. & Norén, F. Screening of microplastic particles in and down-stream a wastewater treatment plant (IVL Swedish Environmental Research Institute, 2014).

    Google Scholar 

  • 36.

    Talvitie, J. et al. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Sci. Technol. 72, 1495–1504 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Carr, S. A., Liu, J. & Tesoro, A. G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 91, 174–182 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Dris, R. et al. Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 5, 592–599 (2015).

    Article 
    CAS 

    Google Scholar 

  • 39.

    HELCOM, 2014. Baltic Marine Environment Protection Commission, Preliminary study on Synthetic microfibers and particles at a municipal waste water treatment plant, BASE project 2012–2014.

  • 40.

    Lares, M., Ncibi, M. C., Sillanpää, M. & Sillanpää, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res 133, 236–246 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 50, 5800–5808 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Garside, M. Global plastic production from 1950 to 2018. Statista. Available online at: https://www.statista.com/statistics/282732/global-production-ofplastics-since-1950 (2019).

  • 43.

    Jang, M. et al. H, Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region. Environ Pollut. 231, 785–794 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    De-la-Torre, G. E., Dioses-Salinas, D. C., Pizarro-Ortega, C. I. & Saldaña-Serran, M. Global distribution of two polystyrene-derived contaminants in the marine environment: A review. Mar. Pollut. Bull. 161, 111729 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Zitko, V. Expanded polystyrene as a source of contaminants. Mar. Pollut. Bull 10, 584–585 (1993).

    Article 

    Google Scholar 

  • 46.

    Hoerter, J. & Eisenstark, A. Synergistic killing of bacteria and phage by polystyrene and ultraviolet radiation. Environ. Mutagen. 12, 261–264 (1988).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Miao, L. et al. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification. Environ. Pollut. 255, 113300 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Rupe, L. A., Tuthill, L. B. & Leikhim, J. W. Thickened bleach compositions for treating hard-to-remove soils. U.S. Patent No. 4116851. (1978).

  • 49.

    Merritt, K., Hitchins, V. M. & Brown, S. A. Safety and cleaning of medical materials and devices. J. Biomed. Mater. Res. 53, 131–136 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    https://www.dutscher.com/data/pdf_guides/en/CCTPPA.pdf Material Pour Laboratories ET Industries, Dominique Dutscher.

  • 51.

    Messing, A. & Sela, Y. SHAFDAN (Greater Tel Aviv Wastewater Treatment Plant): recent upgrade and expansion. Water Pract. Technol 2, 288–297 (2016).

    Article 

    Google Scholar 

  • 52.

    Eldad Spivak, Engineering Firm LTD., Raanana wastewater facility, Israel. http://www.spivak.co.il/en/projects/raanana-wastewater-facility.

  • 53.

    Balasha Jalon, Infrastructure systems LTD., Karmiel wastewater treatment plant- First stage- Israel. http://bj-is.com/karmiel-wwtp.

  • 54.

    Heinlaan, M. et al. & Kahru, A, Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Sci. Total Environ. 707, 136073 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Snead, M. C. Benefits of maintaining a chlorine residual in water supply systems, 600/2-80-0100 (US Environmental Protection Agency, 1980).

  • 56.

    Harp, D.L. Current technology for chlorine analysis in water and wastewater. Technical Information Series—Booklet No.17. Hach Company (2002).

  • 57.

    4500-Cl CHLORINE (RESIDUAL). Standard Methods For the Examination of Water and Wastewater, 23rd (2018).

  • 58.

    Engelhardt, T. & Malkov, V. B. Chlorination, chloramination and chlorine measurement 18–20 (HACH, 2015).

    Google Scholar 

  • 59.

    https://www.polyfluor.nl/en/chemical-resistance/ptfe/. Specialist in PTFE, Engineering and Manufacturing Service, Polyfluor.

  • 60.

    Vollmer, A. C., Belkin, S., Smulski, D. R., Van Dyk, T. K. & LaRossa, R. A. Detection of DNA damage by use of Escherichia coli carrying recA’: lux, uvrA’: lux, or alkA’: lux reporter plasmids. Appl. Environ. Microbiol. 63, 2566–2571 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Van Dyk, T. K. et al. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl. Environ. Microbiol. 60, 1414–1420 (1994).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Eltzov, E., Marks, R. S., Voost, S., Wullings, B. A. & Heringa, M. B. Flow-through real time bacterial biosensor for toxic compounds in water. Sensors Actuators B: Chem. 142, 11–18 (2009).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Harpaz, D. et al. Measuring artificial sweeteners toxicity using a bioluminescent bacterial panel. Molecules 23, 2454 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Thiagarajan, V., Iswarya, V., Seenivasan, R., Chandrasekaran, N. & Mukherjee, A. Influence of differently functionalized polystyrene microplastics on the toxic effects of P25 TiO2 NPs towards marine algae Chlorella sp. Aquat. Toxicol. 207, 208–216 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Kelkar, V. P. et al. Chemical and physical changes of microplastics during sterilization by chlorination. Water Res. 163, 114871 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Zhang, X. et al. Formation and interdependence of disinfection byproducts during chlorination of natural organic matter in a conventional drinking water treatment plant. Chemosphere 242, 125227 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Yan, M., Roccaro, P., Fabbricino, M. & Korshin, G. V. Comparison of the effects of chloramine and chlorine on the aromaticity of dissolved organic matter and yields of disinfection by-products. Chemosphere 191, 477–484 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Hüffer, T. & Hofmann, T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environ. Pollut. 214, 194–201 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Author Correction: Calculation of external climate costs for food highlights inadequate pricing of animal products

    Encouraging solar energy adoption in rural India