in

Substitution of inland fisheries with aquaculture and chicken undermines human nutrition in the Peruvian Amazon

  • 1.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    SOFIA 2020—State of Fisheries and Aquaculture in the World 2020 (FAO, 2020).

  • 4.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Kawarazuka, N. & Béné, C. The potential role of small fish species in improving micronutrient deficiencies in developing countries: building evidence. Public Health Nutr. 14, 1927–1938 (2011).

    Article 

    Google Scholar 

  • 6.

    Belton, B. & Thilsted, S. H. Fisheries in transition: food and nutrition security implications for the global South. Glob. Food Sec. 3, 59–66 (2014).

    Article 

    Google Scholar 

  • 7.

    Hilborn, R., Banobi, J., Hall, S. J., Pucylowski, T. & Walsworth, T. E. The environmental cost of animal source foods. Front. Ecol. Environ. 16, 329–335 (2018).

    Article 

    Google Scholar 

  • 8.

    Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Heilpern, S. Integrating Food Webs and Food Security to Understand the Impact of Biodiversity Loss on Ecosystem Functions and Services. PhD thesis, Columbia Univ. (2020).

  • 10.

    Ministerio de Desarrollo Agrario y Riego (Midagri); https://www.gob.pe/midagri

  • 11.

    Ministerio de la Producción (Produce); https://www.gob.pe/produce

  • 12.

    OECD-FAO Agricultural Outlook, 2019 edn (OECD/FAO, 2020).

  • 13.

    Peru—National Program for Innovation in Fisheries and Aquaculture Project (World Bank, 2017).

  • 14.

    DeFries, R. et al. Metrics for land-scarce agriculture. Science 349, 238–240 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Loreto: Resultados Definitivos de la Población Economicamnte Activa 2017 (Instituto Nacional de Estadistica e Informática, 2018).

  • 16.

    McIntyre, P. B., Liermann, C. A. R. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Youn, S.-J. et al. Inland capture fishery contributions to global food security and threats to their future. Glob. Food Sec. 3, 142–148 (2014).

    Article 

    Google Scholar 

  • 18.

    Kawarazuka, N. & Béné, C. The potential role of small fish species in improving micronutrient deficiencies in developing countries: building evidence. Public Health Nutr. 14, 1927–1938 (2011).

    Article 

    Google Scholar 

  • 19.

    Bogard, J. R. et al. Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes. J. Food Compos. Anal. 42, 120–133 (2015).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Vaitla, B. et al. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nat. Commun. 9, 1–10 (2018).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Popkin, B. M. Nutrition, agriculture and the global food system in low and middle income countries. Food Policy 47, 91–96 (2014).

    Article 

    Google Scholar 

  • 22.

    Bogard, J. R. et al. Higher fish but lower micronutrient intakes: temporal changes in fish consumption from capture fisheries and aquaculture in Bangladesh. PLoS ONE 12, e0175098 (2017).

    Article 

    Google Scholar 

  • 23.

    Golden, C. D., Fernald, L. C. H., Brashares, J. S., Rasolofoniaina, B. J. R. & Kremen, C. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. Proc. Natl Acad. Sci. USA 108, 19653–19656 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Davis, K. F. et al. Meeting future food demand with current agricultural resources. Global Environ. Change 39, 125–132 (2016).

    Article 

    Google Scholar 

  • 25.

    Parker, R. W. R. & Tyedmers, P. H. Fuel consumption of global fishing fleets: current understanding and knowledge gaps. Fish Fish. 16, 684–696 (2015).

    Article 

    Google Scholar 

  • 26.

    Parker, R. W. R. et al. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Change 8, 333–337 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 27.

    Avadí, A. et al. Comparative environmental performance of artisanal and commercial feed use in Peruvian freshwater aquaculture. Aquaculture 435, 52–66 (2015).

    Article 

    Google Scholar 

  • 28.

    Fry, J. P., Mailloux, N. A., Love, D. C., Milli, M. C. & Cao, L. Feed conversion efficiency in aquaculture: do we measure it correctly? Environ. Res. Lett. 13, 024017 (2018).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Prudêncio da Silva, V., van der Werf, H. M. G., Soares, S. R. & Corson, M. S. Environmental impacts of French and Brazilian broiler chicken production scenarios: an LCA approach. J. Environ. Manage. 133, 222–231 (2014).

    Article 

    Google Scholar 

  • 30.

    Seto, K. & Fiorella, K. J. From sea to plate: the role of fish in a sustainable diet. Front. Mar. Sci. 4, 74 (2017).

    Article 

    Google Scholar 

  • 31.

    Lynch, A. J. et al. Inland fish and fisheries integral to achieving the Sustainable Development Goals. Nature Sustain. 3, 579–587 (2020).

  • 32.

    Nardoto, G. B. et al. Frozen chicken for wild fish: nutritional transition in the Brazilian Amazon region determined by carbon and nitrogen stable isotope ratios in fingernails. Am. J. Hum. Biol. 23, 642–650 (2011).

    Article 

    Google Scholar 

  • 33.

    Khoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. Lond B Biol. Sci. 365, 2793–2807 (2010).

    Article 

    Google Scholar 

  • 35.

    Pinnegar, J. K., Hutton, T. P. & Placenti, V. What relative seafood prices can tell us about the status of stocks. Fish Fish. 7, 219–226 (2006).

    Article 

    Google Scholar 

  • 36.

    Wong, J. T. et al. Small-scale poultry and food security in resource-poor settings: a review. Global Food Sec. 15, 43–52 (2017).

    Article 

    Google Scholar 

  • 37.

    Tabela Brasileira de Composição de Alimentos—TACO (Núcleo de Estudos e Pesquisas em Alimentação—NEPA/UNICAMP, 2011).

  • 38.

    Cahu, C., Salen, P. & de Lorgeril, M. Farmed and wild fish in the prevention of cardiovascular diseases: assessing possible differences in lipid nutritional values. Nutr. Metab. Cardiovasc. Dis. 14, 34–41 (2004).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Vitamin and Mineral Requirements in Human Nutrition (WHO/FAO, 2004).

  • 40.

    Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation (FAO, 2010).

  • 41.

    Heilpern, S. A., Weeks, B. C. & Naeem, S. Predicting ecosystem vulnerability to biodiversity loss from community composition. Ecology 99, 1099–1107 (2018).

    Article 

    Google Scholar 

  • 42.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).


  • Source: Ecology - nature.com

    Chemists gain new insights into the behavior of water in an influenza virus channel

    Mutability of demographic noise in microbial range expansions