in

Substrate-dependent competition and cooperation relationships between Geobacter and Dehalococcoides for their organohalide respiration

  • 1.

    Agarwal, V. et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem. Rev. 117, 5619–5674 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Atashgahi, S., Haggblom, M. M. & Smidt, H. Organohalide respiration in pristine environments: implications for the natural halogen cycle. Environ. Microbiol. 20, 934–948 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Gribble G. W. Naturally Occurring Organohalogen Compounds—A Comprehensive Update: (Wien/New York: Springer, 2010).

  • 4.

    Stringer, R. & Johnston, P. Chlorine and the environment: an overview of the chlorine industry. Environ. Sci. Pollut. Res. 8, 146–159 (2001).

    Article 

    Google Scholar 

  • 5.

    Falandysz, J., Rose, M. & Fernandes, A. R. Mixed poly-brominated/chlorinated biphenyls (pxbs): widespread food and environmental contaminants. Environ. Int. 44, 118–127 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Zhang, Z. et al. Halogenated organic pollutants in sediments and organisms from mangrove wetlands of the jiulong river estuary, south china. Environ. Res. 171, 145–152 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Kunze, C. et al. Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer. Nat. Commun. 8, 15858 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Wang, S. et al. Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Biotechnol. Adv. 36, 1194–1206 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Atashgahi S., Lu Y., Smidt H. Overview of known organohalide-respiring bacteria—phylogenetic diversity and environmental distribution. In Adrian L., Löffler F. E., editors. Organohalide-Respiring Bacteria. (Springer, Berlin, 2016).

  • 10.

    Fincker, M. & Spormann, A. M. Biochemistry of catabolic reductive dehalogenation. Annu. Rev. Biochem. 86, 357–386 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Rouzeau-Szynalski, K., Maillard, J. & Holliger, C. Frequent concomitant presence of desulfitobacterium spp. and “dehalococcoides” spp. in chloroethene-dechlorinating microbial communities. Appl. Microbiol. Biotechnol. 90, 361–368 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Wang, S. & He, J. Dechlorination of commercial pcbs and other multiple halogenated compounds by a sediment-free culture containing dehalococcoides and dehalobacter. Environ. Sci. Technol. 47, 10526–10534 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Wang, S. et al. Genomic characterization of three unique dehalococcoides that respire on persistent polychlorinated biphenyls. Proc. Natl. Acad. Sci. U.S.A. 111, 12103–12108 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Bachmann, H. et al. Availability of public goods shapes the evolution of competing metabolic strategies. Proc. Natl. Acad. Sci. U.S.A. 110, 14302–14307 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Yan, J., Ritalahti, K. M., Wagner, D. D. & Loffler, F. E. Unexpected specificity of interspecies cobamide transfer from geobacter spp. To organohalide-respiring dehalococcoides mccartyi strains. Appl. Environ. Microbiol. 78, 6630–6636 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Lawson, C. E. et al. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17, 725–741 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Wang, S., Chen, C., Zhao, S. & He, J. Microbial synergistic interactions for reductive dechlorination of polychlorinated biphenyls. Sci. Total. Environ. 666, 368–376 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Men, Y. et al. Sustainable syntrophic growth of dehalococcoides ethenogenes strain 195 with desulfovibrio vulgaris hildenborough and methanobacterium congolense: Global transcriptomic and proteomic analyses. ISME J. 6, 410–421 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Lu, Q. et al. Dehalococcoides as a potential biomarker evidence for uncharacterized organohalides in environmental samples. Front. Microbiol. 8, 1677 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Xu, G., Lu, Q., Yu, L. & Wang, S. Tetrachloroethene primes reductive dechlorination of polychlorinated biphenyls in a river sediment microcosm. Water Res. 152, 87–95 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Royer, D. L., Osborne, C. P. & Beerling, D. J. Carbon loss by deciduous trees in a co2-rich ancient polar environment. Nature. 424, 60–62 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Wang, S. & He, J. Phylogenetically distinct bacteria involve extensive dechlorination of aroclor 1260 in sediment-free cultures. PLoS One 8, e59178 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Wang, S. et al. Development of an alkaline/acid pre-treatment and anaerobic digestion (apad) process for methane generation from waste activated sludge. Sci. Total Environ. 708, 134564 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Lu, Q. et al. Inhibitory effects of metal ions on reductive dechlorination of polychlorinated biphenyls and perchloroethene in distinct organohalide-respiring bacteria. Environ. Int. 135, 105373 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evolut. 33, 1870–1874 (2016).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Cummings, D. E. et al. Diversity of geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microb. Ecol. 46, 257–269 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Holmes, V. F., He, J., Lee, P. K. & Alvarez-Cohen, L. Discrimination of multiple dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Appl. Environ. Microbiol. 72, 5877–5883 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Joshi N. A., Fass J. N. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle. (2011).

  • 29.

    Bankevich, A. et al. Spades: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with bowtie 2. Nat. Methods. 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Li, H. et al. The sequence alignment/map format and samtools. Bioinformatics. 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Chen, L. X., Anantharaman, K., Shaiber, A., Eren, A. M. & Banfield, J. F. Accurate and complete genomes from metagenomes. Genome Res. 30, 315–333 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. Checkm: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 30, 2068–2069 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. Kaas: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Loffler, F. E. et al. Dehalococcoides mccartyi gen. Nov., sp. Nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, dehalococcoidia classis nov., order dehalococcoidales ord. Nov. And family dehalococcoidaceae fam. Nov., within the phylum chloroflexi. Int. J. Syst. Evol. Microbiol. 63, 625–635 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Garcia C.A. Subsurface occurrence and potential source areas of chlorinated Ethenes Identified using concentrations and concentration ratios, Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas. U.S. Geological Survey, (2006).

  • 38.

    Nichols H. Use of electrical resistive heating for the remediation of CVOC and petroleum impacts in soil and groundwater, NEWMOA Conference. New York City (2012).

  • 39.

    Maymó-Gatell, X., Chien, Y., Gossett, J. M. & Zinder, S. H. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science. 276, 1568–1571 (1997).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Sung, Y. et al. Geobacter lovleyi sp. Nov. Strain sz, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl. Environ. Microbiol. 72, 2775–2782 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Amos, B. K., Suchomel, E. J., Pennell, K. D. & Löffler, F. E. Spatial and temporal distributions of Geobacter lovleyi and Dehalococcoides spp. during bioenhanced PCE-NAPL dissolution. Environ. Sci. Technol. 43, 1977–1985 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Lai, Y. & Becker, J. G. Compounded effects of chlorinated ethene inhibition on ecological interactions and population abundance in a Dehalococcoides–Dehalobacter coculture. Environ. Sci. Technol. 47, 1518–1525 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Lovley, D. R. et al. Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv. Microb. Physiol. 59, 1–100 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Reguera, G. & Kashefi, K. The electrifying physiology of geobacter bacteria, 30 years on. Adv. Microb. Physiol. 74, 1–96 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 45.

    Kruse, S., Goris, T., Westermann, M., Adrian, L. & Diekert, G. Hydrogen production by sulfurospirillum species enables syntrophic interactions of epsilonproteobacteria. Nat. Commun. 9, 4872 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Sanford, R. A., Cole, J. R. & Tiedje, J. M. Characterization and description of anaeromyxobacter dehalogenans gen. Nov., sp. Nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68, 893–900 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Sung, Y. et al. Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as desulfuromonas michiganensis sp. Nov. Appl. Environ. Microbiol. 69, 2964–2974 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Peng, P. et al. Organohalide-respiring desulfoluna species isolated from marine environments. ISME J. 14, 815–827 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Goris, T. et al. Insights into organohalide respiration and the versatile catabolism of sulfurospirillum multivorans gained from comparative genomics and physiological studies. Environ. Microbiol. 16, 3562–3580 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Goris, T. et al. Proteomics of the organohalide-respiring epsilonproteobacterium sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates. Sci. Rep. 5, 13794 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Cross, K. L. et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 37, 1314–1321 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Lewis, W. H. & Ettema, T. J. G. Culturing the uncultured. Nat. Biotechnol. 37, 1278–1279 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Koch, H., van Kessel, M. & Lucker, S. Complete nitrification: insights into the ecophysiology of comammox nitrospira. Appl. Microbiol. Biotechnol. 103, 177–189 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl. Acad. Sci. U.S.A. 104, 11889–11894 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and competition in the evolution of ATP-producing pathways. Science. 292, 504–507 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Roller, B. R. & Schmidt, T. M. The physiology and ecological implications of efficient growth. ISME J. 9, 1481–1487 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Lawson, C. E. & Lucker, S. Complete ammonia oxidation: an important control on nitrification in engineered ecosystems? Curr. Opin. Biotechnol. 50, 158–165 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature. 549, 269–272 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT J-WAFS awards eight grants in seventh round of seed funding

    Non-uniform tropical forest responses to the ‘Columbian Exchange’ in the Neotropics and Asia-Pacific