in

Sulphate-reducing bacterial community structure from produced water of the Periquito and Galo de Campina onshore oilfields in Brazil

[adace-ad id="91168"]
  • 1.

    Abdel-Aal, H. K., Aggour, M. A. & Fahim, M. A. Petroleum and Gas Field Processing. Petroleum and Gas Field Processing (Marcel Dekker, 2015). doi:https://doi.org/10.1201/9780429021350.

  • 2.

    Vikram, A., Lipus, D. & Bibby, K. Produced water exposure alters bacterial response to biocides. Environ. Sci. Technol. 48, 13001–13009 (2014).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 3.

    Cluff, M. A., Hartsock, A., MacRae, J. D., Carter, K. & Mouser, P. J. Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured marcellus shale gas wells. Environ. Sci. Technol. 48, 6508–6517 (2014).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 4.

    Gregory, K. & Mohan, A. M. Current perspective on produced water management challenges during hydraulic fracturing for oil and gas recovery. Environ. Chem. 12, 261 (2015).

    CAS 
    Article 

    Google Scholar 

  • 5.

    da Silva Almeida, F. B. P., Esquerre, K. P. S. O. R., Soletti, J. I. & De Farias Silva, C. E. Coalescence process to treat produced water: an updated overview and environmental outlook. Environ. Sci. Pollut. Res. 26, 28668–28688 (2019).

  • 6.

    Kabyl, A., Yang, M., Abbassi, R. & Li, S. A risk-based approach to produced water management in offshore oil and gas operations. Process Saf. Environ. Prot. 139, 341–361 (2020).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Danforth, C. et al. An integrative method for identification and prioritization of constituents of concern in produced water from onshore oil and gas extraction. Environ. Int. 134, 105280 (2020).

  • 8.

    Bachmann, R. T., Johnson, A. C. & Edyvean, R. G. J. Biotechnology in the petroleum industry: An overview. Int. Biodeterior. Biodegrad. 86, 225–237 (2014).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Rellegadla, S., Jain, S. & Agrawal, A. Oil reservoir simulating bioreactors: tools for understanding petroleum microbiology. Appl. Microbiol. Biotechnol. 104, 1035–1053 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Weschenfelder, S. E. et al. Evaluation of ceramic membranes for oilfield produced water treatment aiming reinjection in offshore units. J. Pet. Sci. Eng. 131, 51–57 (2015).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Benka-Coker, M. O., Metseagharun, W. & Ekundayo, J. A. Abundance of sulphate-reducing bacteria in Niger Delta oilfield waters. Bioresour. Technol. 54, 151–154 (1995).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Magot, M., Ollivier, B. & Patel, B. K. C. Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 77, 103–116 (2000).

  • 13.

    Santillan, E. F. U., Choi, W., Bennett, P. C. & Diouma Leyris, J. The effects of biocide use on the microbiology and geochemistry of produced water in the Eagle Ford formation, Texas, U.S.A. J. Pet. Sci. Eng. 135, 1–9 (2015).

  • 14.

    Liu, H. et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria. Corros. Sci. 102, 93–102 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 15.

    Katebian, L. et al. Inhibiting quorum sensing pathways to mitigate seawater desalination RO membrane biofouling. Desalination 393, 135–143 (2016).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Tang, K., Baskaran, V. & Nemati, M. Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem. Eng. J. 44, 73–94 (2009).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Kahrilas, G. A., Blotevogel, J., Stewart, P. S. & Borch, T. Biocides in Hydraulic Fracturing Fluids: A Critical Review of Their Usage, Mobility, Degradation, and Toxicity. Environ. Sci. Technol. 49, 16–32 (2015).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 18.

    Tanji, Y., Toyama, K., Hasegawa, R. & Miyanaga, K. Biological souring of crude oil under anaerobic conditions. Biochem. Eng. J. 90, 114–120 (2014).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Vikram, A., Bomberger, J. M. & Bibby, K. J. Efflux as a Glutaraldehyde Resistance Mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa Biofilms. Antimicrob. Agents Chemother. 59, 3433–3440 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Struchtemeyer, C. G., Morrison, M. D. & Elshahed, M. S. A critical assessment of the efficacy of biocides used during the hydraulic fracturing process in shale natural gas wells. Int. Biodeterior. Biodegrad. 71, 15–21 (2012).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Turkiewicz, A., Brzeszcz, J. & Kapusta, P. The application of biocides in the oil and gas industry. Nafta-Gaz R. 69, nr, 103–111 (2013).

  • 22.

    Videla, H. A. & Herrera, L. K. Microbiologically influenced corrosion: looking to the future. Int. Microbiol. 8, 169–180 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Xu, D., Li, Y. & Gu, T. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry 110, 52–58 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Sachan, R. & Singh, A. K. Comparison of microbial influenced corrosion in presence of iron oxidizing bacteria (strains DASEWM1 and DASEWM2). Constr. Build. Mater. 256, 119438 (2020).

  • 25.

    Hino, S., Kazuya, W. & Takahashi, N. Isolation and Characterization of Slime-Producing Bacteria Capable of Utilizing Petroleum Hydrocarbons as a Sole Carbon Source. J. Ferment. Bioeng. 84, 528–531 (1997).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Kim, H. S., Wright, K., Piccioni, J., Cho, D. J. & Cho, Y. I. Inactivation of bacteria by the application of spark plasma in produced water. Sep. Purif. Technol. 156, 544–552 (2015).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Nazina, T. N. et al. Functional and phylogenetic microbial diversity in formation waters of a low-temperature carbonate petroleum reservoir. Int. Biodeterior. Biodegrad. 81, 71–81 (2013).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Stipanicev, M. et al. Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: Laboratory investigation. Bioelectrochemistry 97, 76–88 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Li, X. X. et al. Microbiota and their affiliation with physiochemical characteristics of different subsurface petroleum reservoirs. Int. Biodeterior. Biodegrad. 120, 170–185 (2017).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Jurelevicius, D. et al. Bacterial community response to petroleum hydrocarbon amendments in freshwater, marine, and hypersaline water-containing microcosms. Appl. Environ. Microbiol. 79, 5927–5935 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 31.

    Silva, T. R., Verde, L. C. L., Santos Neto, E. V. & Oliveira, V. M. Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields. Int. Biodeterior. Biodegrad. 81, 57–70 (2013).

  • 32.

    Beech, I. B. & Gaylarde, C. C. Recent advances in the study of biocorrosion: an overview. Rev. Microbiol. 30, 117–190 (1999).

    Article 

    Google Scholar 

  • 33.

    Korenblum, E., Valoni, É., Penna, M. & Seldin, L. Bacterial diversity in water injection systems of Brazilian offshore oil platforms. Appl. Microbiol. Biotechnol. 85, 791–800 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Vasconcellos, S. P. et al. The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir. World J. Microbiol. Biotechnol. 27, 1513–1518 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Postgate, J. R. The sulphate-reducing bacteria, 2nd edn. (Cambridge University Press, 1984).

  • 36.

    Baars, J. K. Over Sulphatreductie door Bacterien. (Dissertation, 1930).

  • 37.

    Whiteley, A. S. & Bailey, M. J. Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl. Environ. Microbiol. 66, 2400–2407 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 38.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 39.

    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 40.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).

    Article 
    CAS 

    Google Scholar 

  • 41.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    R Core Team. R: A Language and Environment for Statistical Computing. (2021).

  • 43.

    McMurdie, P. J. & Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One 8, e61217 (2013).

  • 44.

    Lahti, L., Shetty, S., Blake, T. & Salojarvi, J. Tools for microbiome analysis in R. Version 1(5), 28 (2017).

    Google Scholar 

  • 45.

    Muturi, E. J., Njoroge, T. M., Dunlap, C. & Cáceres, C. E. Blood meal source and mixed blood-feeding influence gut bacterial community composition in Aedes aegypti. Parasit. Vectors 14, 83 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 47.

    Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • 48.

    Oksanen, J. et al. vegan: Community Ecology Package. (2020).

  • 49.

    Zare, N. et al. Using enriched water and soil-based indigenous halophilic consortia of an oilfield for the biological removal of organic pollutants in hypersaline produced water generated in the same oilfield. Process Saf. Environ. Prot. 127, 151–161 (2019).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Belgini, D. R. B. et al. Integrated diversity analysis of the microbial community in a reverse osmosis system from a Brazilian oil refinery. Syst. Appl. Microbiol. 41, 473–486 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    de Sousa Pires, A. et al. Molecular diversity and abundance of the microbial community associated to an offshore oil field on the southeast of Brazil. Int. Biodeterior. Biodegradation 160, 105215 (2021).

  • 52.

    Tüccar, T., Ilhan-Sungur, E. & Muyzer, G. Bacterial Community Composition in Produced Water of Diyarbakır Oil Fields in Turkey. Johnson Matthey Technol. Rev. https://doi.org/10.1595/205651320X15911723486216 (2020).

    Article 

    Google Scholar 

  • 53.

    Aurepatipan, N., Champreda, V., Kanokratana, P., Chitov, T. & Bovonsombut, S. Assessment of bacterial communities and activities of thermotolerant enzymes produced by bacteria indigenous to oil-bearing sandstone cores for potential application in Enhanced Oil Recovery. J. Pet. Sci. Eng. 163, 295–302 (2018).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Li, X. X. et al. Dominance of Desulfotignum in sulfate-reducing community in high sulfate production-water of high temperature and corrosive petroleum reservoirs. Int. Biodeterior. Biodegrad. 114, 45–56 (2016).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Lan, G. Enrichment and diversity analysis of the thermophilic microbes in a high temperature petroleum reservoir. African J. Microbiol. Res. 5, 1850–1857 (2011).

    ADS 

    Google Scholar 

  • 56.

    Nguyen, T. T., Cochrane, S. K. J. & Landfald, B. Perturbation of seafloor bacterial community structure by drilling waste discharge. Mar. Pollut. Bull. 129, 615–622 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Ganesh Kumar, A., Nivedha Rajan, N., Kirubagaran, R. & Dharani, G. Biodegradation of crude oil using self-immobilized hydrocarbonoclastic deep sea bacterial consortium. Mar. Pollut. Bull. 146, 741–750 (2019).

  • 58.

    Birkeland, N. K. Sulfate-Reducing Bacteria and Archaea. in Petroleum Microbiology (eds. Ollivier, B. & Magot) 35–54 (American Society of Microbiology, 2005). doi:https://doi.org/10.1128/9781555817589.ch3.

  • 59.

    Gam, Z. B. A. et al. Desulfovibrio tunisiensis sp. nov., a novel weakly halotolerant, sulfate-reducing bacterium isolated from exhaust water of a Tunisian oil refinery. Int. J. Syst. Evol. Microbiol. 59, 1059–1063 (2009).

  • 60.

    Christman, G. D., León-Zayas, R. I., Zhao, R., Summers, Z. M. & Biddle, J. F. Novel clostridial lineages recovered from metagenomes of a hot oil reservoir. Sci. Rep. 10, 8048 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 61.

    Li, X.-X. et al. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir. Front. Microbiol. 8, (2017).

  • 62.

    Popoola, L., Grema, A., Latinwo, G., Gutti, B. & Balogun, A. Corrosion problems during oil and gas production and its mitigation. Int. J. Ind. Chem. 4, 35 (2013).

    Article 

    Google Scholar 

  • 63.

    Street, C. N. & Gibbs, A. Eradication of the corrosion-causing bacterial strains Desulfovibrio vulgaris and Desulfovibrio desulfuricans in planktonic and biofilm form using photodisinfection. Corros. Sci. 52, 1447–1452 (2010).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Varjani, S. J. & Gnansounou, E. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresour. Technol. 245, 1258–1265 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    da Rosa, J. P., Tibúrcio, S. R. G., Marques, J. M., Seldin, L. & Coelho, R. R. R. Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm. Brazilian J. Microbiol. 47, 603–609 (2016).

    Article 
    CAS 

    Google Scholar 

  • 66.

    Xie, C. H. & Yokota, A. Pleomorphomonas oryzae gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from paddy soil of Oryza sativa. Int. J. Syst. Evol. Microbiol. 55, 1233–1237 (2005).

  • 67.

    Madhaiyan, M. et al. Pleomorphomonas diazotrophica sp. nov., an endophytic N-fixing bacterium isolated from root tissue of Jatropha curcas L. Int. J. Syst. Evol. Microbiol. 63, 2477–2483 (2013).

  • 68.

    Im, W.-T. Pleomorphomonas koreensis sp. nov., a nitrogen-fixing species in the order Rhizobiales. Int. J. Syst. Evol. Microbiol. 56, 1663–1666 (2006).

  • 69.

    Sung, H. R., Yoon, J. H. & Ghim, S. Y. Shewanella dokdonensis sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 62, 1636–1643 (2012).

  • 70.

    Torri, A. et al. Shewanella algae infection in Italy: report of 3 years’ evaluation along the coast of the northern Adriatic Sea. New Microbes New Infect. 23, 39–43 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Semple, K. M. & Westlake, D. W. S. Characterization of iron-reducing Alteromonas putrefaciens strains from oil field fluids. Can. J. Microbiol. 33, 366–371 (1987).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Kim, D. D. et al. Microbial community analyses of produced waters from high-temperature oil reservoirs reveal unexpected similarity between geographically distant oil reservoirs. Microb. Biotechnol. 11, 788–796 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Angelova, A. G., Ellis, G. A., Wijesekera, H. W. & Vora, G. J. Microbial Composition and Variability of Natural Marine Planktonic and Biofouling Communities From the Bay of Bengal. Front. Microbiol. 10, (2019).

  • 74.

    Salgar-Chaparro, S. J., Lepkova, K., Pojtanabuntoeng, T., Darwin, A. & Machuca, L. L. Microbiologically influenced corrosion as a function of environmental conditions: A laboratory study using oilfield multispecies biofilms. Corros. Sci. 169, 108595 (2020).

  • 75.

    Michas, A. et al. More than 2500 years of oil exposure shape sediment microbiomes with the potential for syntrophic degradation of hydrocarbons linked to methanogenesis. Microbiome 5, 118 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Tinker, K. et al. Geochemistry and Microbiology Predict Environmental Niches With Conditions Favoring Potential Microbial Activity in the Bakken Shale. Front. Microbiol. 11, (2020).

  • 77.

    Zhong, C., Nesbø, C. L., Goss, G. G., Lanoil, B. D. & Alessi, D. S. Response of aquatic microbial communities and bioindicator modelling of hydraulic fracturing flowback and produced water. FEMS Microbiol. Ecol. 96, (2020).

  • 78.

    Xiao, M. et al. Bacterial community diversity in a low-permeability oil reservoir and its potential for enhancing oil recovery. Bioresour. Technol. 147, 110–116 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Gulliver, D., Lipus, D., Tinker, K., Ross, D. & Sarkar, P. The Geochemistry and Microbial Ecology of Produced Waters from Three Different Unconventional Oil and Gas Regions. in Proceedings of the 8th Unconventional Resources Technology Conference (American Association of Petroleum Geologists, 2020). doi:https://doi.org/10.15530/urtec-2020-2979.

  • 80.

    Davis, J. P., Struchtemeyer, C. G. & Elshahed, M. S. Bacterial Communities Associated with Production Facilities of Two Newly Drilled Thermogenic Natural Gas Wells in the Barnett Shale (Texas, USA). Microb. Ecol. 64, 942–954 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Daly, R. A. et al. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nat. Microbiol. 1, 16146 (2016).

  • 82.

    Lipus, D. et al. Predominance and Metabolic Potential of Halanaerobium spp. in Produced Water from Hydraulically Fractured Marcellus Shale Wells. Appl. Environ. Microbiol. 83, (2017).

  • 83.

    Zdanowski, M. K. et al. Enrichment of Cryoconite Hole Anaerobes: Implications for the Subglacial Microbiome. Microb. Ecol. 73, 532–538 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Guo, H., Chen, C., Lee, D.-J., Wang, A. & Ren, N. Sulfur–nitrogen–carbon removal of Pseudomonas sp. C27 under sulfide stress. Enzyme Microb. Technol. 53, 6–12 (2013).

  • 85.

    Brahmacharimayum, B. & Ghosh, P. K. Effects of different environmental and operating conditions on sulfate bioreduction in shake flasks by mixed bacterial culture predominantly Pseudomonas aeruginosa. Desalin. Water Treat. 57, 17911–17921 (2016).

    CAS 
    Article 

    Google Scholar 

  • 86.

    Gao, P., Wang, H., Li, G. & Ma, T. Low-Abundance Dietzia Inhabiting a Water-Flooding Oil Reservoir and the Application Potential for Oil Recovery. Biomed Res. Int. 2019, 1–11 (2019).

    CAS 

    Google Scholar 

  • 87.

    Gao, P., Li, Y., Tan, L., Guo, F. & Ma, T. Composition of Bacterial and Archaeal Communities in an Alkali-Surfactant-Polyacrylamide-Flooded Oil Reservoir and the Responses of Microcosms to Nutrients. Front. Microbiol. 10, (2019).

  • 88.

    Liu, Y.-F. et al. Metabolic capability and in situ activity of microorganisms in an oil reservoir. Microbiome 6, 5 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Li, D. et al. Microbial biodiversity in a Malaysian oil field and a systematic comparison with oil reservoirs worldwide. Arch. Microbiol. 194, 513–523 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 90.

    Sierra-Garcia, I. N. et al. Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs at local and global scales. Extremophiles 21, 211–229 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 91.

    Xingbiao, W., Yanfen, X., Sanqing, Y., Zhiyong, H. & Yanhe, M. Influences of microbial community structures and diversity changes by nutrients injection in Shengli oilfield, China. J. Pet. Sci. Eng. 133, 421–430 (2015).

    Article 
    CAS 

    Google Scholar 

  • 92.

    Li, G. et al. The relative abundance of alkane-degrading bacteria oscillated similarly to a sinusoidal curve in an artificial ecosystem model from oil-well products. Environ. Microbiol. 20, 3772–3783 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 93.

    Cui, K. et al. Stimulation of indigenous microbes by optimizing the water cut in low permeability reservoirs for green and enhanced oil recovery. Sci. Rep. 9, 15772 (2019).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 94.

    Cleary, A. et al. Bioremediation of strontium and technetium contaminated groundwater using glycerol phosphate. Chem. Geol. 509, 213–222 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 95.

    Xia, X. et al. Changes in groundwater bacterial community during cyclic groundwater‐table variations. Hydrol. Process. hyp.13917 (2020) doi:https://doi.org/10.1002/hyp.13917.

  • 96.

    Braun, K. & Gibson, D. T. Anaerobic degradation of 2-aminobenzoate (anthranilic acid) by denitrifying bacteria. Appl. Environ. Microbiol. 48, 102–107 (1984).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 97.

    Cai, M. et al. Crude oil as a microbial seed bank with unexpected functional potentials. Sci. Rep. 5, 16057 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 98.

    Arai, H. Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa. Front. Microbiol. 2, (2011).

  • 99.

    Hilgarth, M., Lehner, E. M., Behr, J. & Vogel, R. F. Diversity and anaerobic growth of Pseudomonas spp. isolated from modified atmosphere packaged minced beef. J. Appl. Microbiol. 127, 159–174 (2019).


  • Source: Ecology - nature.com

    Extending the natural adaptive capacity of coral holobionts

    A microfluidic platform for highly parallel bite by bite profiling of mosquito-borne pathogen transmission