in

Supplementation of Lactobacillus early in life alters attention bias to threat in piglets

  • 1.

    Clarke, G. et al. Minireview: gut microbiota: the neglected endocrine organ. Mol. Endocrinol. 28, 1221–1238. https://doi.org/10.1210/me.2014-1108 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Cryan, J. F. & O’Mahony, S. M. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol. Motil. 23, 187–192. https://doi.org/10.1111/j.1365-2982.2010.01664.x (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Hollister, E. B. et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome 3, 36. https://doi.org/10.1186/s40168-015-0101-x (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Cheng, J. et al. Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME J. 10, 1002–1014. https://doi.org/10.1038/ismej.2015.177 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 5.

    Lim, M. Y., Song, E.-J., Kang, K. S. & Nam, Y.-D. Age-related compositional and functional changes in micro-pig gut microbiome. GeroScience 41, 935–944. https://doi.org/10.1007/s11357-019-00121-y (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Kim, J., Nguyen, S. G., Guevarra, R. B., Lee, I. & Unno, T. Analysis of swine fecal microbiota at various growth stages. Arch. Microbiol. 197, 753–759. https://doi.org/10.1007/s00203-015-1108-1 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439. https://doi.org/10.1126/science.1237439 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    de Weerth, C. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci. Biobehav. Rev. 83, 458–471. https://doi.org/10.1016/j.neubiorev.2017.09.016 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U.S.A. 108, 3047–3052. https://doi.org/10.1073/pnas.1010529108 (2011).

    ADS 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558, 263–275. https://doi.org/10.1113/jphysiol.2004.063388 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Rutsch, A., Kantsjö, J. B. & Ronchi, F. The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol. https://doi.org/10.3389/fimmu.2020.604179 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U.S.A. 108, 16050–16055. https://doi.org/10.1073/pnas.1102999108 (2011).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Kamada, N., Seo, S.-U., Chen, G. Y. & Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335. https://doi.org/10.1038/nri3430 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Dinan, T. G. & Cryan, J. F. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37, 1369–1378. https://doi.org/10.1016/j.psyneuen.2012.03.007 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From Dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Parker, A., Fonseca, S. & Carding, S. R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microb. 11, 135–157. https://doi.org/10.1080/19490976.2019.1638722 (2020).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Silva, Y. P., Bernardi, A. & Frozza, R. L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. https://doi.org/10.3389/fendo.2020.00025 (2020).

    Article 

    Google Scholar 

  • 18.

    Neufeld, K. M., Kang, N., Bienenstock, J. & Foster, J. A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 23, 255-e119. https://doi.org/10.1111/j.1365-2982.2010.01620.x (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Clarke, G. et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18, 666–673. https://doi.org/10.1038/mp.2012.77 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Foster, J. A. & McVeyNeufeld, K.-A. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36, 305–312. https://doi.org/10.1016/j.tins.2013.01.005 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    O’Mahony, S. M. et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol. Psychiatry 65, 263–267. https://doi.org/10.1016/j.biopsych.2008.06.026 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 22.

    Schmidt, B. et al. Establishment of normal gut microbiota is compromised under excessive hygiene conditions. PLoS ONE 6, e28284. https://doi.org/10.1371/journal.pone.0028284 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Mulder, I. E. et al. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol. 7, 79. https://doi.org/10.1186/1741-7007-7-79 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Quigley, E. M. M. Probiotics in functional gastrointestinal disorders: what are the facts?. Curr. Opin. Pharmacol. 8, 704–708. https://doi.org/10.1016/j.coph.2008.08.007 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Dowarah, R., Verma, A. K. & Agarwal, N. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: a review. Anim. Nutr. 3, 1–6. https://doi.org/10.1016/j.aninu.2016.11.002 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 26.

    Cussotto, S., Sandhu, K. V., Dinan, T. G. & Cryan, J. F. The neuroendocrinology of the microbiota-gut-brain axis: a behavioural perspective. Front. Neuroendocrinol. 51, 80–101. https://doi.org/10.1016/j.yfrne.2018.04.002 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Barros-Santos, T. et al. Effects of chronic treatment with new strains of Lactobacillus plantarum on cognitive, anxiety- and depressive-like behaviors in male mice. PLoS ONE https://doi.org/10.1371/journal.pone.0234037 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Liu, W.-H. et al. Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav. Brain Res. 298, 202–209. https://doi.org/10.1016/j.bbr.2015.10.046 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Davis, D. J. et al. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Sci. Rep. 6, 33726. https://doi.org/10.1038/srep33726 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Jang, H. M., Lee, K. E. & Kim, D. H. The preventive and curative effects of Lactobacillus reuteri NK33 and bifidobacterium adolescentis NK98 on immobilization stress-induced anxiety/depression and colitis in mice. Nutrients https://doi.org/10.3390/nu11040819 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Buffington, S. A. et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165, 1762–1775. https://doi.org/10.1016/j.cell.2016.06.001 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Zhang, N. et al. Efficacy of probiotics on stress in healthy volunteers: a systematic review and meta-analysis based on randomized controlled trials. Brain Behav. 10, e01699. https://doi.org/10.1002/brb3.1699 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Liu, R. T., Walsh, R. F. L. & Sheehan, A. E. Prebiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials. Neurosci. Biobehav. Rev. 102, 13–23. https://doi.org/10.1016/j.neubiorev.2019.03.023 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Lyte, M. Microbial endocrinology: host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microb. 5, 381–389. https://doi.org/10.4161/gmic.28682 (2014).

    Article 

    Google Scholar 

  • 35.

    Tabouy, L. et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav. Immun. 73, 310–319. https://doi.org/10.1016/j.bbi.2018.05.015 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 36.

    Mao, J.-H. et al. Genetic and metabolic links between the murine microbiome and memory. Microbiome 8, 53. https://doi.org/10.1186/s40168-020-00817-w (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Mendl, M., Burman, O. H. P. & Paul, E. S. An integrative and functional framework for the study of animal emotion and mood. Proc. Biol. Sci. 277, 2895–2904. https://doi.org/10.1098/rspb.2010.0303 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Kraimi, N. et al. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: a review. Physiol. Behav. 210, 112658. https://doi.org/10.1016/j.physbeh.2019.112658 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Xiao, L. et al. A reference gene catalogue of the pig gut microbiome. Nat. Microbiol. 1, 16161. https://doi.org/10.1038/nmicrobiol.2016.161 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Douglas, C., Bateson, M., Walsh, C., Bédué, A. & Edwards, S. A. Environmental enrichment induces optimistic cognitive biases in pigs. Appl. Anim. Behav. Sci. 139, 65–73. https://doi.org/10.1016/j.applanim.2012.02.018 (2012).

    Article 

    Google Scholar 

  • 41.

    Brydges, N. M., Leach, M., Nicol, K., Wright, R. & Bateson, M. Environmental enrichment induces optimistic cognitive bias in rats. Anim. Behav. 81, 169–175. https://doi.org/10.1016/j.anbehav.2010.09.030 (2011).

    Article 

    Google Scholar 

  • 42.

    Paul, E. S., Harding, E. J. & Mendl, M. Measuring emotional processes in animals: the utility of a cognitive approach. Neurosci. Biobehav. Rev. 29, 469–491. https://doi.org/10.1016/j.neubiorev.2005.01.002 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 43.

    Crump, A., Arnott, G. & Bethell, E. Affect-driven attention biases as animal welfare indicators: review and methods. Animals 8, 136 (2018).

    Article 

    Google Scholar 

  • 44.

    Hutton, S. B. Cognitive control of saccadic eye movements. Brain Cogn. 68, 327–340. https://doi.org/10.1016/j.bandc.2008.08.021 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Dolan, R. J. & Vuilleumier, P. Amygdala automaticity in emotional processing. Ann. N. Y. Acad. Sci. 985, 348–355. https://doi.org/10.1111/j.1749-6632.2003.tb07093.x (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J. & Van Ijzendoorn, M. H. Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychol. Bull. 133, 1–24. https://doi.org/10.1037/0033-2909.133.1.1 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 47.

    Verbeek, E., Colditz, I., Blache, D. & Lee, C. Chronic stress influences attentional and judgement bias and the activity of the HPA axis in sheep. PLoS ONE https://doi.org/10.1371/journal.pone.0211363 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Lee, C., Verbeek, E., Doyle, R. & Bateson, M. Attention bias to threat indicates anxiety differences in sheep. Biol. Lett. https://doi.org/10.1098/rsbl.2015.0977 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Brilot, B. O. & Bateson, M. Water bathing alters threat perception in starlings. Biol. Lett. 8, 379–381. https://doi.org/10.1098/rsbl.2011.1200 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Luo, L., Reimert, I., de Haas, E. N., Kemp, B. & Bolhuis, J. E. Effects of early and later life environmental enrichment and personality on attention bias in pigs (Sus scrofa domesticus). Anim. Cogn. 22, 959–972. https://doi.org/10.1007/s10071-019-01287-w (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Bögels, S. M. & Mansell, W. Attention processes in the maintenance and treatment of social phobia: hypervigilance, avoidance and self-focused attention. Clin. Psychol. Rev. 24, 827–856. https://doi.org/10.1016/j.cpr.2004.06.005 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 52.

    Bethell, E. J., Holmes, A., MacLarnon, A. & Semple, S. Evidence that emotion mediates social attention in Rhesus Macaques. PLoS ONE https://doi.org/10.1371/journal.pone.0044387 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Cisler, J. M. & Koster, E. H. W. Mechanisms of attentional biases towards threat in anxiety disorders: an integrative review. Clin. Psychol. Rev. 30, 203–216 (2010).

    Article 

    Google Scholar 

  • 54.

    Koster, E. H. W., Crombez, G., Verschuere, B., Van Damme, S. & Wiersema, J. R. Components of attentional bias to threat in high trait anxiety: facilitated engagement, impaired disengagement, and attentional avoidance. Behav. Res. Ther. 44, 1757–1771. https://doi.org/10.1016/j.brat.2005.12.011 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 55.

    Mogg, K., Bradley, B., Miles, F. & Dixon, R. Brief report time course of attentional bias for threat scenes: testing the vigilance-avoidance hypothesis. Cogn. Emot. 18, 689–700. https://doi.org/10.1080/02699930341000158 (2004).

    Article 

    Google Scholar 

  • 56.

    Mogg, K. & Bradley, B. P. A cognitive-motivational analysis of anxiety. Behav. Res. Ther. 36, 809–848. https://doi.org/10.1016/S0005-7967(98)00063-1 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Ellenbogen, M. A., Schwartzman, A. E., Stewart, J. & Walker, C. D. Stress and selective attention: the interplay of mood, cortisol levels, and emotional information processing. Psychophysiology 39, 723–732. https://doi.org/10.1017/s0048577202010739 (2002).

    Article 
    PubMed 

    Google Scholar 

  • 58.

    Koster, E. H. W., Verschuere, B., Crombez, G. & Van Damme, S. Time-course of attention for threatening pictures in high and low trait anxiety. Behav. Res. Ther. 43, 1087–1098. https://doi.org/10.1016/j.brat.2004.08.004 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 59.

    Richards, H. J., Benson, V., Donnelly, N. & Hadwin, J. A. Exploring the function of selective attention and hypervigilance for threat in anxiety. Clin. Psychol. Rev. 34, 1–13. https://doi.org/10.1016/j.cpr.2013.10.006 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 60.

    McLeman, M. A., Mendl, M., Jones, R. B., White, R. & Wathes, C. M. Discrimination of conspecifics by juvenile domestic pigs, Sus scrofa. Anim. Behav. 70, 451–461. https://doi.org/10.1016/j.anbehav.2004.11.013 (2005).

    Article 

    Google Scholar 

  • 61.

    Kristensen, H. H., Jones, R. B., Schofield, C. P., White, R. P. & Wathes, C. M. The use of olfactory and other cues for social recognition by juvenile pigs. Appl. Anim. Behav. Sci. 72, 321–333. https://doi.org/10.1016/S0168-1591(00)00209-4 (2001).

    Article 
    PubMed 

    Google Scholar 

  • 62.

    Nores, C., Llaneza, L. & Álvarez, Á. Wild boar “Sus scrofa” mortality by hunting and wolf “Canis lupus” predation: an example in northern Spain. Wildlife Biol. 14, 44–51 (2008).

    Article 

    Google Scholar 

  • 63.

    Verbeek, E., Ferguson, D. & Lee, C. Are hungry sheep more pessimistic? The effects of food restriction on cognitive bias and the involvement of ghrelin in its regulation. Physiol. Behav. 123, 67–75 (2014).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Forkman, B., Boissy, A., Meunier-Salaün, M. C., Canali, E. & Jones, R. B. A critical review of fear tests used on cattle, pigs, sheep, poultry and horses. Physiol. Behav. 92, 340–374. https://doi.org/10.1016/j.physbeh.2007.03.016 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 65.

    Ruis, M. A. W. et al. Adaptation to social isolation: acute and long-term stress responses of growing gilts with different coping characteristics. Physiol. Behav. 73, 541–551. https://doi.org/10.1016/S0031-9384(01)00548-0 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 66.

    Stolba, A. & Wood-Gush, D. G. M. The behaviour of pigs in a semi-natural environment. Anim. Prod. 48, 419–425. https://doi.org/10.1017/S0003356100040411 (1989).

    Article 

    Google Scholar 

  • 67.

    Fleming, S. A. & Dilger, R. N. Young pigs exhibit differential exploratory behavior during novelty preference tasks in response to age, sex, and delay. Behav. Brain Res. 321, 50–60. https://doi.org/10.1016/j.bbr.2016.12.027 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 68.

    Bethell, E. J., Cassidy, L. C., Brockhausen, R. R. & Pfefferle, D. Toward a standardized test of fearful temperament in primates: a sensitive alternative to the human intruder task for laboratory-housed Rhesus Macaques (Macaca mulatta). Front. Psychol. https://doi.org/10.3389/fpsyg.2019.01051 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    du Sert, N. P. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLOS Biol. 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020).

    CAS 
    Article 

    Google Scholar 

  • 70.

    European Union. Council Directive 2008/120/EC of 18 December 2008 laying down minimum standards for the protection of pigs. Off. J. Eur. Union (2018).

  • 71.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (R Core Team, 2021).

    Google Scholar 

  • 72.

    Tremblay, A. & Ransijn, J. LMERConvenienceFunctions: Model Selection and Post-Hoc Analysis for (G)LMER Models. R package version 3.0. https://CRAN.R-project.org/package=LMERConvenienceFunctions (2020).

  • 73.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. 67, 48. https://doi.org/10.18637/jss.v067.i01 (2015).

  • 74.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. 82, 26. https://doi.org/10.18637/jss.v082.i13 (2017).

  • 75.

    Russell, L. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.1. https://CRAN.R-project.org/package=emmeans (2020).

  • 76.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. https://ggplot2.tidyverse.org (2016).


  • Source: Ecology - nature.com

    Semiparametric model selection for identification of environmental covariates related to adult groundfish catches and weights

    3 Questions: Nadia Christidi on the arts and the future of water