Clarke, G. et al. Minireview: gut microbiota: the neglected endocrine organ. Mol. Endocrinol. 28, 1221–1238. https://doi.org/10.1210/me.2014-1108 (2014).
Google Scholar
Cryan, J. F. & O’Mahony, S. M. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol. Motil. 23, 187–192. https://doi.org/10.1111/j.1365-2982.2010.01664.x (2011).
Google Scholar
Hollister, E. B. et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome 3, 36. https://doi.org/10.1186/s40168-015-0101-x (2015).
Google Scholar
Cheng, J. et al. Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME J. 10, 1002–1014. https://doi.org/10.1038/ismej.2015.177 (2016).
Google Scholar
Lim, M. Y., Song, E.-J., Kang, K. S. & Nam, Y.-D. Age-related compositional and functional changes in micro-pig gut microbiome. GeroScience 41, 935–944. https://doi.org/10.1007/s11357-019-00121-y (2019).
Google Scholar
Kim, J., Nguyen, S. G., Guevarra, R. B., Lee, I. & Unno, T. Analysis of swine fecal microbiota at various growth stages. Arch. Microbiol. 197, 753–759. https://doi.org/10.1007/s00203-015-1108-1 (2015).
Google Scholar
Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439. https://doi.org/10.1126/science.1237439 (2013).
Google Scholar
de Weerth, C. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci. Biobehav. Rev. 83, 458–471. https://doi.org/10.1016/j.neubiorev.2017.09.016 (2017).
Google Scholar
Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U.S.A. 108, 3047–3052. https://doi.org/10.1073/pnas.1010529108 (2011).
Google Scholar
Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558, 263–275. https://doi.org/10.1113/jphysiol.2004.063388 (2004).
Google Scholar
Rutsch, A., Kantsjö, J. B. & Ronchi, F. The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol. https://doi.org/10.3389/fimmu.2020.604179 (2020).
Google Scholar
Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U.S.A. 108, 16050–16055. https://doi.org/10.1073/pnas.1102999108 (2011).
Google Scholar
Kamada, N., Seo, S.-U., Chen, G. Y. & Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335. https://doi.org/10.1038/nri3430 (2013).
Google Scholar
Dinan, T. G. & Cryan, J. F. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37, 1369–1378. https://doi.org/10.1016/j.psyneuen.2012.03.007 (2012).
Google Scholar
Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From Dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041 (2016).
Google Scholar
Parker, A., Fonseca, S. & Carding, S. R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microb. 11, 135–157. https://doi.org/10.1080/19490976.2019.1638722 (2020).
Google Scholar
Silva, Y. P., Bernardi, A. & Frozza, R. L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. https://doi.org/10.3389/fendo.2020.00025 (2020).
Google Scholar
Neufeld, K. M., Kang, N., Bienenstock, J. & Foster, J. A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 23, 255-e119. https://doi.org/10.1111/j.1365-2982.2010.01620.x (2011).
Google Scholar
Clarke, G. et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18, 666–673. https://doi.org/10.1038/mp.2012.77 (2013).
Google Scholar
Foster, J. A. & McVeyNeufeld, K.-A. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36, 305–312. https://doi.org/10.1016/j.tins.2013.01.005 (2013).
Google Scholar
O’Mahony, S. M. et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol. Psychiatry 65, 263–267. https://doi.org/10.1016/j.biopsych.2008.06.026 (2009).
Google Scholar
Schmidt, B. et al. Establishment of normal gut microbiota is compromised under excessive hygiene conditions. PLoS ONE 6, e28284. https://doi.org/10.1371/journal.pone.0028284 (2011).
Google Scholar
Mulder, I. E. et al. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol. 7, 79. https://doi.org/10.1186/1741-7007-7-79 (2009).
Google Scholar
Quigley, E. M. M. Probiotics in functional gastrointestinal disorders: what are the facts?. Curr. Opin. Pharmacol. 8, 704–708. https://doi.org/10.1016/j.coph.2008.08.007 (2008).
Google Scholar
Dowarah, R., Verma, A. K. & Agarwal, N. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: a review. Anim. Nutr. 3, 1–6. https://doi.org/10.1016/j.aninu.2016.11.002 (2017).
Google Scholar
Cussotto, S., Sandhu, K. V., Dinan, T. G. & Cryan, J. F. The neuroendocrinology of the microbiota-gut-brain axis: a behavioural perspective. Front. Neuroendocrinol. 51, 80–101. https://doi.org/10.1016/j.yfrne.2018.04.002 (2018).
Google Scholar
Barros-Santos, T. et al. Effects of chronic treatment with new strains of Lactobacillus plantarum on cognitive, anxiety- and depressive-like behaviors in male mice. PLoS ONE https://doi.org/10.1371/journal.pone.0234037 (2020).
Google Scholar
Liu, W.-H. et al. Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav. Brain Res. 298, 202–209. https://doi.org/10.1016/j.bbr.2015.10.046 (2016).
Google Scholar
Davis, D. J. et al. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Sci. Rep. 6, 33726. https://doi.org/10.1038/srep33726 (2016).
Google Scholar
Jang, H. M., Lee, K. E. & Kim, D. H. The preventive and curative effects of Lactobacillus reuteri NK33 and bifidobacterium adolescentis NK98 on immobilization stress-induced anxiety/depression and colitis in mice. Nutrients https://doi.org/10.3390/nu11040819 (2019).
Google Scholar
Buffington, S. A. et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165, 1762–1775. https://doi.org/10.1016/j.cell.2016.06.001 (2016).
Google Scholar
Zhang, N. et al. Efficacy of probiotics on stress in healthy volunteers: a systematic review and meta-analysis based on randomized controlled trials. Brain Behav. 10, e01699. https://doi.org/10.1002/brb3.1699 (2020).
Google Scholar
Liu, R. T., Walsh, R. F. L. & Sheehan, A. E. Prebiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials. Neurosci. Biobehav. Rev. 102, 13–23. https://doi.org/10.1016/j.neubiorev.2019.03.023 (2019).
Google Scholar
Lyte, M. Microbial endocrinology: host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microb. 5, 381–389. https://doi.org/10.4161/gmic.28682 (2014).
Google Scholar
Tabouy, L. et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav. Immun. 73, 310–319. https://doi.org/10.1016/j.bbi.2018.05.015 (2018).
Google Scholar
Mao, J.-H. et al. Genetic and metabolic links between the murine microbiome and memory. Microbiome 8, 53. https://doi.org/10.1186/s40168-020-00817-w (2020).
Google Scholar
Mendl, M., Burman, O. H. P. & Paul, E. S. An integrative and functional framework for the study of animal emotion and mood. Proc. Biol. Sci. 277, 2895–2904. https://doi.org/10.1098/rspb.2010.0303 (2010).
Google Scholar
Kraimi, N. et al. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: a review. Physiol. Behav. 210, 112658. https://doi.org/10.1016/j.physbeh.2019.112658 (2019).
Google Scholar
Xiao, L. et al. A reference gene catalogue of the pig gut microbiome. Nat. Microbiol. 1, 16161. https://doi.org/10.1038/nmicrobiol.2016.161 (2016).
Google Scholar
Douglas, C., Bateson, M., Walsh, C., Bédué, A. & Edwards, S. A. Environmental enrichment induces optimistic cognitive biases in pigs. Appl. Anim. Behav. Sci. 139, 65–73. https://doi.org/10.1016/j.applanim.2012.02.018 (2012).
Google Scholar
Brydges, N. M., Leach, M., Nicol, K., Wright, R. & Bateson, M. Environmental enrichment induces optimistic cognitive bias in rats. Anim. Behav. 81, 169–175. https://doi.org/10.1016/j.anbehav.2010.09.030 (2011).
Google Scholar
Paul, E. S., Harding, E. J. & Mendl, M. Measuring emotional processes in animals: the utility of a cognitive approach. Neurosci. Biobehav. Rev. 29, 469–491. https://doi.org/10.1016/j.neubiorev.2005.01.002 (2005).
Google Scholar
Crump, A., Arnott, G. & Bethell, E. Affect-driven attention biases as animal welfare indicators: review and methods. Animals 8, 136 (2018).
Google Scholar
Hutton, S. B. Cognitive control of saccadic eye movements. Brain Cogn. 68, 327–340. https://doi.org/10.1016/j.bandc.2008.08.021 (2008).
Google Scholar
Dolan, R. J. & Vuilleumier, P. Amygdala automaticity in emotional processing. Ann. N. Y. Acad. Sci. 985, 348–355. https://doi.org/10.1111/j.1749-6632.2003.tb07093.x (2003).
Google Scholar
Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J. & Van Ijzendoorn, M. H. Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychol. Bull. 133, 1–24. https://doi.org/10.1037/0033-2909.133.1.1 (2007).
Google Scholar
Verbeek, E., Colditz, I., Blache, D. & Lee, C. Chronic stress influences attentional and judgement bias and the activity of the HPA axis in sheep. PLoS ONE https://doi.org/10.1371/journal.pone.0211363 (2019).
Google Scholar
Lee, C., Verbeek, E., Doyle, R. & Bateson, M. Attention bias to threat indicates anxiety differences in sheep. Biol. Lett. https://doi.org/10.1098/rsbl.2015.0977 (2016).
Google Scholar
Brilot, B. O. & Bateson, M. Water bathing alters threat perception in starlings. Biol. Lett. 8, 379–381. https://doi.org/10.1098/rsbl.2011.1200 (2012).
Google Scholar
Luo, L., Reimert, I., de Haas, E. N., Kemp, B. & Bolhuis, J. E. Effects of early and later life environmental enrichment and personality on attention bias in pigs (Sus scrofa domesticus). Anim. Cogn. 22, 959–972. https://doi.org/10.1007/s10071-019-01287-w (2019).
Google Scholar
Bögels, S. M. & Mansell, W. Attention processes in the maintenance and treatment of social phobia: hypervigilance, avoidance and self-focused attention. Clin. Psychol. Rev. 24, 827–856. https://doi.org/10.1016/j.cpr.2004.06.005 (2004).
Google Scholar
Bethell, E. J., Holmes, A., MacLarnon, A. & Semple, S. Evidence that emotion mediates social attention in Rhesus Macaques. PLoS ONE https://doi.org/10.1371/journal.pone.0044387 (2012).
Google Scholar
Cisler, J. M. & Koster, E. H. W. Mechanisms of attentional biases towards threat in anxiety disorders: an integrative review. Clin. Psychol. Rev. 30, 203–216 (2010).
Google Scholar
Koster, E. H. W., Crombez, G., Verschuere, B., Van Damme, S. & Wiersema, J. R. Components of attentional bias to threat in high trait anxiety: facilitated engagement, impaired disengagement, and attentional avoidance. Behav. Res. Ther. 44, 1757–1771. https://doi.org/10.1016/j.brat.2005.12.011 (2006).
Google Scholar
Mogg, K., Bradley, B., Miles, F. & Dixon, R. Brief report time course of attentional bias for threat scenes: testing the vigilance-avoidance hypothesis. Cogn. Emot. 18, 689–700. https://doi.org/10.1080/02699930341000158 (2004).
Google Scholar
Mogg, K. & Bradley, B. P. A cognitive-motivational analysis of anxiety. Behav. Res. Ther. 36, 809–848. https://doi.org/10.1016/S0005-7967(98)00063-1 (1998).
Google Scholar
Ellenbogen, M. A., Schwartzman, A. E., Stewart, J. & Walker, C. D. Stress and selective attention: the interplay of mood, cortisol levels, and emotional information processing. Psychophysiology 39, 723–732. https://doi.org/10.1017/s0048577202010739 (2002).
Google Scholar
Koster, E. H. W., Verschuere, B., Crombez, G. & Van Damme, S. Time-course of attention for threatening pictures in high and low trait anxiety. Behav. Res. Ther. 43, 1087–1098. https://doi.org/10.1016/j.brat.2004.08.004 (2005).
Google Scholar
Richards, H. J., Benson, V., Donnelly, N. & Hadwin, J. A. Exploring the function of selective attention and hypervigilance for threat in anxiety. Clin. Psychol. Rev. 34, 1–13. https://doi.org/10.1016/j.cpr.2013.10.006 (2014).
Google Scholar
McLeman, M. A., Mendl, M., Jones, R. B., White, R. & Wathes, C. M. Discrimination of conspecifics by juvenile domestic pigs, Sus scrofa. Anim. Behav. 70, 451–461. https://doi.org/10.1016/j.anbehav.2004.11.013 (2005).
Google Scholar
Kristensen, H. H., Jones, R. B., Schofield, C. P., White, R. P. & Wathes, C. M. The use of olfactory and other cues for social recognition by juvenile pigs. Appl. Anim. Behav. Sci. 72, 321–333. https://doi.org/10.1016/S0168-1591(00)00209-4 (2001).
Google Scholar
Nores, C., Llaneza, L. & Álvarez, Á. Wild boar “Sus scrofa” mortality by hunting and wolf “Canis lupus” predation: an example in northern Spain. Wildlife Biol. 14, 44–51 (2008).
Google Scholar
Verbeek, E., Ferguson, D. & Lee, C. Are hungry sheep more pessimistic? The effects of food restriction on cognitive bias and the involvement of ghrelin in its regulation. Physiol. Behav. 123, 67–75 (2014).
Google Scholar
Forkman, B., Boissy, A., Meunier-Salaün, M. C., Canali, E. & Jones, R. B. A critical review of fear tests used on cattle, pigs, sheep, poultry and horses. Physiol. Behav. 92, 340–374. https://doi.org/10.1016/j.physbeh.2007.03.016 (2007).
Google Scholar
Ruis, M. A. W. et al. Adaptation to social isolation: acute and long-term stress responses of growing gilts with different coping characteristics. Physiol. Behav. 73, 541–551. https://doi.org/10.1016/S0031-9384(01)00548-0 (2001).
Google Scholar
Stolba, A. & Wood-Gush, D. G. M. The behaviour of pigs in a semi-natural environment. Anim. Prod. 48, 419–425. https://doi.org/10.1017/S0003356100040411 (1989).
Google Scholar
Fleming, S. A. & Dilger, R. N. Young pigs exhibit differential exploratory behavior during novelty preference tasks in response to age, sex, and delay. Behav. Brain Res. 321, 50–60. https://doi.org/10.1016/j.bbr.2016.12.027 (2017).
Google Scholar
Bethell, E. J., Cassidy, L. C., Brockhausen, R. R. & Pfefferle, D. Toward a standardized test of fearful temperament in primates: a sensitive alternative to the human intruder task for laboratory-housed Rhesus Macaques (Macaca mulatta). Front. Psychol. https://doi.org/10.3389/fpsyg.2019.01051 (2019).
Google Scholar
du Sert, N. P. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLOS Biol. 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020).
Google Scholar
European Union. Council Directive 2008/120/EC of 18 December 2008 laying down minimum standards for the protection of pigs. Off. J. Eur. Union (2018).
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (R Core Team, 2021).
Tremblay, A. & Ransijn, J. LMERConvenienceFunctions: Model Selection and Post-Hoc Analysis for (G)LMER Models. R package version 3.0. https://CRAN.R-project.org/package=LMERConvenienceFunctions (2020).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. 67, 48. https://doi.org/10.18637/jss.v067.i01 (2015).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. 82, 26. https://doi.org/10.18637/jss.v082.i13 (2017).
Russell, L. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.1. https://CRAN.R-project.org/package=emmeans (2020).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. https://ggplot2.tidyverse.org (2016).
Source: Ecology - nature.com