Yang, W. Y. et al. Soil properties and geography shape arbuscular mycorrhizal fungal communities in black land of China. Appl. Soil Ecol. 167, 104109. https://doi.org/10.1016/j.apsoil.2021.104109 (2021).
Google Scholar
Li, H. Y. et al. Effects of different slopes and fertilizer types on the grey water footprint of maize production in the black soil region of China. J. Clean. Prod. 246, 119077. https://doi.org/10.1016/j.jclepro.2019.119077 (2020).
Google Scholar
Li, X. Y., Wang, D. Y., Ren, Y. X., Wang, Z. M. & Zhou, Y. H. Soil quality assessment of croplands in the black soil zone of Jilin Province, China: Establishing a minimum data set model. Ecol. Indic. 107, 105251. https://doi.org/10.1016/j.ecolind.2019.03.028 (2019).
Google Scholar
Mao, L. G. et al. Flame soil disinfestation: A novel, promising, non-chemical method to control soilborne nematodes, fungal and bacterial pathogens in China. Crop. Prot. 83, 90–94. https://doi.org/10.1016/j.cropro.2016.02.002 (2016).
Google Scholar
Rasool, M. et al. Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci. Rep. 11, 6092. https://doi.org/10.1038/s41598-021-85633-4 (2021).
Google Scholar
Solorzano, C. D. & Malvick, D. K. Effects of fungicide seed treatments on germination, population, and yield of maize grown from seed infected with fungal pathogens. Field. Crop. Res. 122(3), 173–178. https://doi.org/10.1016/j.fcr.2011.02.011 (2011).
Google Scholar
An-le, H. E. et al. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. J. Integr. Agric. 18(3), 599–606. https://doi.org/10.1016/S2095-3119(18)62089-1 (2019).
Google Scholar
Xu, X. G. et al. Isolation and characterization of Bacillus amyloliquefaciens MQ01, a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone. Food Control 130, 108259. https://doi.org/10.1016/j.foodcont.2021.108259 (2021).
Google Scholar
Bonanomi, G., Antignani, V. & Scala, C. P. Suppression of soilborne fungal diseases with organic amendments. J. Plant. Pathol. 89(3), 311–324 (2007).
Shafique, H. A., Sultana, V., Ehteshamul-Haque, S. & Athar, M. Management of soil-borne diseases of organic vegetables. J. Plan. Protect. Res. https://doi.org/10.1515/jppr-2016-0043 (2016).
Google Scholar
Li, H. et al. Evaluation on the production of food crop straw in China from 2006 to 2014. Bioenerg. Res. 10, 949–957. https://doi.org/10.1007/s12155-017-9845-4 (2017).
Google Scholar
Zhang, P., Wei, T., Jia, Z. K., Han, Q. F. & Ren, X. L. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 230–231, 41–49. https://doi.org/10.1016/j.geoderma.2014.04.007 (2014).
Google Scholar
Yang, H. S. et al. The impacts of ditch-buried straw layers on the interface soil physicochemical and microbial properties in a rice-wheat rotation system. Soil. Till. Res. 202, 146656. https://doi.org/10.1016/j.still.2020.104656 (2020).
Google Scholar
Song, X. Y. et al. Stable isotopes reveal the formation diversity of humic substances derived from different cotton straw-based materials. Sci. Total. Environ. 740, 140202. https://doi.org/10.1016/j.scitotenv.2020.140202 (2020).
Google Scholar
Mi, Y. Z. et al. Changes in soil quality, bacterial community and anti-pepper Phytophthora disease ability after combined application of straw and multifunctional composite bacterial strains. Eur. J. Soil. Biol. 105, 103329. https://doi.org/10.1016/j.ejsobi.2021.103329 (2021).
Google Scholar
Guo, X. X., Liu, H. T. & Wu, S. B. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total. Environ. 662, 501–510. https://doi.org/10.1016/j.scitotenv.2019.01.137 (2019).
Google Scholar
Baldock, J. A. & Skjemstad, J. O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31(7–8), 697–710. https://doi.org/10.1016/S0146-6380(00)00049-8 (2000).
Google Scholar
Chaparro, J. M. et al. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fert. Soils. 48(5), 489–499. https://doi.org/10.1007/s00374-012-0691-4 (2012).
Google Scholar
Hu, Y. et al. Integrated biocontrol of tobacco bacterial wilt by antagonistic bacteria and marigold. Sci. Rep. 11, 16360. https://doi.org/10.1038/s41598-021-95741-w (2021).
Google Scholar
Hyder, S. et al. Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.). Sci. Rep. 10, 13859. https://doi.org/10.1038/s41598-020-69410-3 (2020).
Google Scholar
Paterson, E., Sim, A., Osborne, S. & Murray, P. J. Long-term exclusion of plant-inputs to soil reduces the functional capacity of microbial communities to mineralise recalcitrant root-derived carbon sources. Soil. Biol. Biochem. 43(9), 1873–1880. https://doi.org/10.1016/j.soilbio.2011.05.006 (2011).
Google Scholar
Wang, H., Guo, Q., Li, X., Li, X. & Zhang, C. Effects of long-term no-tillage with different straw mulching frequencies on soil microbial community and the abundances of two soil-borne pathogens. Appl. Soil. Ecol. 148, 103488. https://doi.org/10.1016/j.apsoil.2019.103488 (2020).
Google Scholar
Ndzelu, B. S., Dou, S. & Zhang, X. W. Changes in soil humus composition and humic acid structural characteristics under different corn straw returning modes. Soil. Res. 58, 452–460. https://doi.org/10.1071/SR20025 (2020).
Google Scholar
De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total. Environ. 738, 139840. https://doi.org/10.1016/j.scitotenv.2020.139840 (2021).
Google Scholar
Wong, M. & Swift, R. S. Role of organic matter in alleviating soil acidity. in Handbook of Soil Acidity. http://espace.library.uq.edu.au/view/UQ:191317 (2003).
Xie, W. J. et al. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study. Soil. Till. Res. 198, 104535. https://doi.org/10.1016/j.still.2019.104535 (2020).
Google Scholar
Cathal, N. et al. Soil aggregates formed in vitro by saprotrophic Trichocomaceae have transient water-stability. Soil. Biol. Biochem. 48, 151–161. https://doi.org/10.1016/j.soilbio.2012.01.010 (2012).
Google Scholar
Lou, Y. L., Xu, M. G., Wang, W., Sun, X. L. & Zhao, K. Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil. Till. Res. 113(1), 70–73. https://doi.org/10.1016/j.still.2011.01.007 (2011).
Google Scholar
Loffredo, E., Berloco, M. & Senesi, N. The role of humic fractions from soil and compost in controlling the growth in vitro of phytopathogenic and antagonistic soil-borne fungi. Ecotoxicol. Environ. Saf. 69(3), 350–357. https://doi.org/10.1016/j.ecoenv.2007.11.005 (2008).
Google Scholar
Bhatia, A. et al. Diversity of bacterial isolates during full scale rotary drum composting. Waste Manag. 33(7), 1595–1601. https://doi.org/10.1016/j.wasman.2013.03.019 (2013).
Google Scholar
Dou, S., Zhang, J. J. & Li, K. Effect of organic matter applications on 13C-NMR spectra of humic acids of soil. Eur. J. Soil. Sci. 59(3), 532–539. https://doi.org/10.1111/j.1365-2389.2007.01012.x (2008).
Google Scholar
De, V. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9(1), 3033. https://doi.org/10.1038/s41467-018-05516-7 (2018).
Google Scholar
Sanaullah, M. et al. How do microbial communities in top and subsoil respond to root litter addition under field conditions?. Soil Biol. Biochem. 103, 28–38. https://doi.org/10.1016/j.soilbio.2016.07.017 (2016).
Google Scholar
Song, Y. et al. Identification of the produced volatile organic compounds and the involved soil bacteria during decomposition of watermelon plant residues in a Fusarium-infested soil. Geoderma 315, 178–187. https://doi.org/10.1016/j.geoderma.2017.11.021 (2018).
Google Scholar
Vida, C., Cazorla, F. M. & Vicente, A. D. Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Res. Microbiol. 168(6), 583–593. https://doi.org/10.1016/j.resmic.2017.03.007 (2017).
Google Scholar
Liu, J. G., Li, X. G., Jia, Z. J., Zhang, T. L. & Wang, X. X. Effect of benzoic acid on soil microbial communities associated with soilborne peanut diseases. Appl. Soil. Ecol. 110, 34–42. https://doi.org/10.1016/j.apsoil.2016.11.001 (2017).
Google Scholar
Zhao, S. C. et al. Ciampitti dynamic of fungal community composition during maize residue decomposition process in north-central China. Appl. Soil Ecol. 167, 104057. https://doi.org/10.1016/j.apsoil.2021.104057 (2021).
Google Scholar
Zhang, J., Xu, Y., Liang, S., Ma, X. & Sun, F. Synergistic effect of klebsiella sp. fh-1 and arthrobacter sp. nj-1 on the growth of the microbiota in the black soil of northeast china. Ecotox. Environ. Safe 190, 110079. https://doi.org/10.1016/j.ecoenv.2019.110079 (2019).
Google Scholar
Wang, X. W. et al. Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud. Mycol. 84, 145–224. https://doi.org/10.1016/j.simyco.2016.11.005 (2016).
Google Scholar
Chen, W. H. et al. High-throughput sequencing analysis of endophytic fungal diversity in cynanchum sp.. S. Afr. J. Bot. 134, 349–358. https://doi.org/10.1016/j.sajb.2020.04.010 (2020).
Google Scholar
Voriskova, J. & Baldrain, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7(3), 477–486. https://doi.org/10.1038/ismej.2012.116 (2013).
Google Scholar
Kerdraon, L., Laval, V. & Suffert, F. Microbiomes and pathogen survival in crop residues, an ecotone between plant and soil. Phytobiomes J. 3, 246–255. https://doi.org/10.1094/pbiomes-02-19-0010-rvw (2019).
Google Scholar
Rahman, S. F. S. A. et al. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267, 102–111. https://doi.org/10.1016/j.plantsci.2017.11.012 (2018).
Google Scholar
Wachowska, U., Irzykowski, W., Jedryczka, M., Stasiulewicz-Paluch, A. D. & Glowacka, K. Biological control of winter wheat pathogens with the use of antagonistic Sphingomonas bacteria under greenhouse conditions. Biocontrol. Sci. Technol. 23, 1110–1122. https://doi.org/10.1080/09583157.2013.812185 (2013).
Google Scholar
Liu, J. J. et al. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem. 83(0038–0017), 29–39. https://doi.org/10.1016/j.soilbio.2015.01.009 (2012).
Google Scholar
Xiong, W. et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biol. Biochem. 107, 198–207. https://doi.org/10.1016/j.soilbio.2017.01.010 (2017).
Google Scholar
Raaijmakers, J. M. & Mazzola, M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50, 403–424. https://doi.org/10.1146/annurev-phyto-081211-172908 (2012).
Google Scholar
Deng, X. H. et al. Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease. Appl. Soil Ecol. 147, 103364. https://doi.org/10.1016/j.apsoil.2019.103364 (2020).
Google Scholar
Li, C. N. et al. Microbial inoculation influences bacterial community succession and physicochemical characteristics during pig manure composting with corn straw. Bioresour. Technol. 289, 121653. https://doi.org/10.1016/j.biortech.2019.121653 (2019).
Google Scholar
Lydia, S., Tymon, P. M., Gundersen, B. & Inglis, D. A. Potential of endophytic fungi collected from Cucurbita pepo roots grown under three different agricultural mulches as antagonistic endophytes to Verticillium dahliae in western Washington. Microbiol. Res. 240, 126535. https://doi.org/10.1016/j.micres.2020.126535 (2020).
Google Scholar
Mehmood, M. A. et al. Sclerotia of a phytopathogenic fungus restrict microbial diversity and improve soil health by suppressing other pathogens and enriching beneficial microorganisms. J. Environ. Manag. 259, 109857. https://doi.org/10.1016/j.jenvman.2019.109857 (2020).
Google Scholar
Ding, J. L. et al. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl. Soil. Ecol. 111, 114–122. https://doi.org/10.1016/j.apsoil.2016.12.003 (2017).
Google Scholar
Zhao, Y. Y. et al. Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose. Microbiol. Res. 242, 126624. https://doi.org/10.1016/j.micres.2020.126624 (2021).
Google Scholar
Liu, X. S. et al. Organic amendment improves rhizosphere environment and shapes soil bacterial community in black and red soil under lead stress. J. Hazard. Mater. 416, 125805. https://doi.org/10.1016/j.jhazmat.2021.125805 (2021).
Google Scholar
Qiao, J. Q., Tian, D. W., Huo, R., Wu, H. J. & Gao, X. W. Functional analysis and application of the cryptic plasmid pBSG3 harboring the RapQ–PhrQ system in Bacillus amyloliquefaciens B3. Plasmid 65(2), 141–149. https://doi.org/10.1016/j.plasmid.2010.11.008 (2011).
Google Scholar
Coutte, F. et al. Effect of pps disruption and constitutive expression of srfa on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J. Appl. Microbiol. 109(2), 480–491. https://doi.org/10.1111/j.1365-2672.2010.04683.x (2010).
Google Scholar
Leclere, V. et al. Mycosubtilin overproduction by Bacillus subtilis bbg100 enhances the organism’s antagonistic and biocontrol activities. Appl. Environ. Microb. 71(8), 4577. https://doi.org/10.1128/AEM.71.8.4577-4584.2005 (2005).
Google Scholar
Choi, S. K., Jeong, H., Kloepper, J. W. & Ryu, C. M. Genome sequence of Bacillus amyloliquefaciens GB03, an active ingredient of the first commercial biological control product. Genome Announc. 2(5), 1092–1106. https://doi.org/10.1128/genomeA.01092-14 (2014).
Google Scholar
Kim, S. Y., Lee, S. Y., Weon, H. Y., Sang, M. K. & Song, J. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste. J. Biotechnol. 241, 112–115. https://doi.org/10.1016/j.jbiotec.2016.11.023 (2017).
Google Scholar
Abbasi, S. et al. Streptomyces strains modulate dynamics of soil bacterial communities and their efficacy in disease suppression caused by Phytophthora capsici. Sci. Rep. 11, 9317. https://doi.org/10.1038/s41598-021-88495-y (2021).
Google Scholar
Saravanakumar, K. et al. Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium stalk rot. Sci. Rep. 7, 1771. https://doi.org/10.1038/s41598-017-01680-w (2017).
Google Scholar
Yan, F., Li, C., Ye, X., Lian, Y. & Wang, X. Antifungal activity of lipopeptides from Bacillus amyloliquefaciens mg3 against colletotrichum gloeosporioides in loquat fruits. Biol. Control 146, 104281. https://doi.org/10.1016/j.biocontrol.2020.104281 (2020).
Google Scholar
Qi, Y., Liu, H., Wang, J. & Wang, Y. Effects of different straw biochar combined with microbial inoculants on soil environment of ginseng. Sci. Rep. 11, 14685. https://doi.org/10.21203/rs.3.rs-189319/v1 (2021).
Google Scholar
Wang, Y. et al. Evaluation and spatial variability of paddy soil fertility in typical county of northeast China. J. Plant Nutr. Fertil. 26(2), 256–266. https://doi.org/10.11674/zwyf.19128 (2020).
Google Scholar
Cambardella, C. A. & Elliott, E. T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci. Soc. Am. J. 57(4), 1071–1076. https://doi.org/10.2136/sssaj1993.03615995005700040032x (1993).
Google Scholar
Zhang, X., Dou, S., Ndzelu, B. S., Guan, X. W. & Bai, Y. Effects of different corn straw amendments on humus composition and structural characteristics of humic acid in black soil. Commun. Soil. Sci. Plan. 51(1), 1–11. https://doi.org/10.1080/00103624.2019.1695827 (2019).
Google Scholar
Edgar, R. C. Uparse: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 10(10), 996. https://doi.org/10.1038/NMETH.2604 (2021).
Google Scholar
Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353. https://doi.org/10.1038/ismej (2013).
Google Scholar
Lourenço, K. S. et al. Resilience of the resident soil microbiome to organic and inorganic amendment disturbances and to temporary bacterial invasion. Microbiome 6, 142. https://doi.org/10.1186/s40168-018-0525-1 (2018).
Google Scholar
Source: Ecology - nature.com