in

Temperature-dependent modelling and spatial prediction reveal suitable geographical areas for deployment of two Metarhizium anisopliae isolates for Tuta absoluta management

  • 1.

    Sibomana, M. S., Workneh, T. S. & Audain, K. A review of postharvest handling and losses in the fresh tomato supply chain: A focus on Sub-Saharan Africa. Food Secur. 8, 389–404 (2016).

    Google Scholar 

  • 2.

    Ochilo, W. N. et al. Characteristics and production constraints of smallholder tomato production in Kenya. Sci. Afr. 2, e00014 (2019).

    Google Scholar 

  • 3.

    Pratt, C. F., Constantine, K. L. & Murphy, S. T. Economic impacts of invasive alien species on African smallholder livelihoods. Glob. Food Sec. 14, 31–37 (2017).

    Google Scholar 

  • 4.

    Aigbedion-Atalor, P. O. et al. The South America tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), spreads its wings in Eastern Africa: distribution and socioeconomic impacts. J. Econ. Entomol. 112, 2797–2807 (2019).

    PubMed 

    Google Scholar 

  • 5.

    Brévault, T., Sylla, S., Diatte, M., Bernadas, G. & Diarra, K. Tuta absoluta Meyrick (Lepidoptera: Gelechiidae): A new threat to tomato production in sub-Saharan Africa. African Entomol. 22, 441–444 (2014).

    Google Scholar 

  • 6.

    Guedes, R. N. C. & Picanço, M. C. The tomato borer Tuta absoluta in South America: Pest status, management and insecticide resistance. EPPO Bull. 42, 211–216 (2012).

    Google Scholar 

  • 7.

    Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).

    Google Scholar 

  • 8.

    Abbes, K., Harbi, A. & Chermiti, B. The tomato leafminer Tuta absoluta (Meyrick) in Tunisia: Current status and management strategies. EPPO Bull. 42, 226–233 (2012).

    Google Scholar 

  • 9.

    Biondi, A., Guedes, R. N. C., Wan, F.-H. & Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63, 239–258 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • 10.

    Niassy, S., Ekesi, S., Migiro, L. & Otieno, W. Sustainable management of invasive pests in Africa. (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-41083-4.

  • 11.

    Mansour, R. et al. Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol. Gen. 38, 83–112 (2018).

    Google Scholar 

  • 12.

    Lietti, M. M. M., Botto, E. & Alzogaray, R. A. Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 34, 113–119 (2005).

    Google Scholar 

  • 13.

    Guedes, R. N. C. C. et al. Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. J. Pest Sci. 92, 1329–1342 (2019).

    Google Scholar 

  • 14.

    APRD. Arthropod Pesticide Resistance Database, Michigan State University. https://www.pesticideresistance.org/display.php?pa.

  • 15.

    Lichtenberg, E. & Zimmerman, R. Adverse health experiences, environmental attitudes, and pesticide usage behavior of farm operators. Risk Anal. 19, 283–294 (1999).

    PubMed 
    CAS 

    Google Scholar 

  • 16.

    Soares, M. A. et al. Botanical insecticide and natural enemies: a potential combination for pest management against Tuta absoluta. J. Pest Sci. 92, 1433–1443 (2019).

    Google Scholar 

  • 17.

    Aigbedion-Atalor, P. O. et al. Host stage preference and performance of Dolichogenidea gelechiidivoris (Hymenoptera: Braconidae), a candidate for classical biological control of Tuta absoluta in Africa. Biol. Control 144, 1–8 (2020).

    Google Scholar 

  • 18.

    Akutse, K. S., Subramanian, S., Khamis, F. M., Ekesi, S. & Mohamed, S. A. Entomopathogenic fungus isolates for adult Tuta absoluta (Lepidoptera: Gelechiidae) management and their compatibility with Tuta pheromone. J. Appl. Entomol. 1–11 (2020). https://doi.org/10.1111/jen.12812.

  • 19.

    Agbessenou, A. et al. Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera: Gelechiidae) through a hidden friendship and cryptic battle. Sci. Rep. 10, 22195 (2020).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 20.

    Lacey, L. A. et al. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 132, 1–41 (2015).

    PubMed 
    CAS 

    Google Scholar 

  • 21.

    Chandler, D. et al. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B Biol. Sci. 366, 1987–1998 (2011).

  • 22.

    Shang, Y., Feng, P. & Wang, C. Fungi that infect insects: Altering host behavior and beyond. PLoS Pathog. 11, 1–6 (2015).

    Google Scholar 

  • 23.

    Bayissa, W. et al. Selection of fungal isolates for virulence against three aphid pest species of crucifers and okra. J. Pest Sci. 90, 355–368 (2017).

    Google Scholar 

  • 24.

    Jackson, M. A., Dunlap, C. A. & Jaronski, S. T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biocontrol 55, 129–145 (2010).

    Google Scholar 

  • 25.

    Fang, W., Azimzadeh, P. & St. Leger, R. J. Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Curr. Opin. Microbiol. 15, 232–238 (2012).

  • 26.

    Tumuhaise, V. et al. Temperature-dependent growth and virulence, and mass production potential of two candidate isolates of Metarhizium anisopliae (Metschnikoff) Sorokin for managing Maruca vitrata Fabricius (Lepidoptera: Crambidae) on cowpea. African Entomol. 26, 73–83 (2018).

    Google Scholar 

  • 27.

    Onsongo, S. K., Gichimu, B. M., Akutse, K. S., Dubois, T. & Mohamed, S. A. Performance of three isolates of Metarhizium anisopliae and their virulence against Zeugodacus cucurbitae under different temperature regimes, with global extrapolation of their efficiency. Insects 10, 1–13 (2019).

    Google Scholar 

  • 28.

    Dimbi, S., Maniania, N. K., Lux, S. A. & Mueke, J. M. Effect of constant temperatures on germination, radial growth and virulence of Metarhizium anisopliae to three species of African tephritid fruit flies. Biocontrol 49, 83–94 (2004).

    Google Scholar 

  • 29.

    Ekesi, S., Maniania, N. K. & Lux, S. A. Effect of soil temperature and moisture on survival and infectivity of Metarhizium anisopliae to four tephritid fruit fly puparia. J. Invertebr. Pathol. 83, 157–167 (2003).

    PubMed 
    CAS 

    Google Scholar 

  • 30.

    Jaronski, S. T. Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55, 159–185 (2010).

    Google Scholar 

  • 31.

    Klass, J. I., Blanford, S. & Thomas, M. B. Development of a model for evaluating the effects of environmental temperature and thermal behaviour on biological control of locusts and grasshoppers using pathogens. Agric. For. Entomol. 9, 189–199 (2007).

    Google Scholar 

  • 32.

    Klass, J. I., Blanford, S. & Thomas, M. B. Use of a geographic information system to explore spatial variation in pathogen virulence and the implications for biological control of locusts and grasshoppers. Agric. For. Entomol. 9, 201–208 (2007).

    Google Scholar 

  • 33.

    Allen, C. & Mehler, D. M. A. Open science challenges, benefits and tips in early career and beyond. Plos Biol. 17, 1–14 (2019).

    Google Scholar 

  • 34.

    McCammon, S. A. & Rath, A. C. Separation of Metarhizium anisopliae strains by temperature dependent germination rates. Mycol. Res. 98, 1253–1257 (1994).

    Google Scholar 

  • 35.

    Ekesi, S., Maniania, N. K. & Ampong-Nyarko, K. Effect of temperature on germination, radial growth and virulence of Metarhizium anisopliae and Beauveria bassiana on Megalurothrips sjostedti. Biocontrol Sci. Technol. 9, 177–185 (1999).

    Google Scholar 

  • 36.

    De Croos, J. N. A. & Bidochka, M. J. Effects of low temperature on growth parameters in the entomopathogenic fungus Metarhizium anisopliae. Can. J. Microbiol. 45, 1055–1061 (1999).

    Google Scholar 

  • 37.

    Dahlberg, K. R. & Etten, J. L. V. Physiology and biochemistry of fungal sporulation. Annu. Rev. Phytopathol. 20, 281–301 (1982).

    CAS 

    Google Scholar 

  • 38.

    Hywel-Jones, N. L. & Gillespie, A. T. Effect of temperature on spore germination in Metarhizium anisopliae and Beauveria bassiana. Mycol. Res. 94, 389–392 (1990).

    Google Scholar 

  • 39.

    Acheampong, M. A., Coombes, C. A., Moore, S. D. & Hill, M. P. Temperature tolerance and humidity requirements of select entomopathogenic fungal isolates for future use in citrus IPM programmes. J. Invertebr. Pathol. 174, 107436 (2020).

  • 40.

    Allen, P. J. Metabolic aspects of spores germination in fungi. Annu. Rev. Phytopathol. 3, 313–342 (1965).

    CAS 

    Google Scholar 

  • 41.

    de Campos, M. R. et al. Thermal biology of Tuta absoluta: demographic parameters and facultative diapause. J. Pest Sci. (2004). (2020) doi:https://doi.org/10.1007/s10340-020-01286-8.

  • 42.

    Vidal, C., Fargues, J. & Lacey, L. A. Intraspecific variability of Paecilomyces fumosoroseus: Effect of temperature on vegetative growth. J. Invertebr. Pathol. 70, 18–26 (1997).

    Google Scholar 

  • 43.

    Smits, N., Brière, J.-F. & Fargues, J. Comparison of non-linear temperature-dependent development rate models applied to in vitro growth of entomopathogenic fungi. Mycol. Res. 107, 1476–1484 (2003).

    PubMed 

    Google Scholar 

  • 44.

    Cabanillas, H. E. & Jones, W. A. Effects of temperature and culture media on vegetative growth of an entomopathogenic fungus Isaria sp. (Hypocreales: Clavicipitaceae) naturally affecting the whitefly, Bemisia tabaci in Texas. Mycopathologia 167, 263–271 (2009).

  • 45.

    Guimapi, R. A. et al. Decision support system for fitting and mapping nonlinear functions with application to insect pest management in the biological control context. Algorithms 13, 1–21 (2020).

    Google Scholar 

  • 46.

    Smith, J. D. et al. Host range of the invasive tomato pest Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) on solanaceous crops and Weeds in Tanzania. Florida Entomol. 101, 573–579 (2018).

    Google Scholar 

  • 47.

    Tumuhaise, V., Khamis, F. M., Agona, A., Sseruwu, G. & Mohamed, S. A. First record of Tuta absoluta (Lepidoptera: Gelechiidae) in Uganda. Int. J. Trop. Insect Sci. 36, 135–139 (2016).

    Google Scholar 

  • 48.

    Kassa, A., Brownbridge, M., Parker, B. L. & Skinner, M. Whey for mass production of Beauveria bassiana and Metarhizium anisopliae. Mycol. Res. 112, 583–591 (2008).

    PubMed 

    Google Scholar 

  • 49.

    Jenkins, N. E., Heviefo, G., Langewald, J., Cherry, A. J. & Lomer, C. J. Development of mass production technology for aerial conidia for use as mycopesticides. Biocontrol News Inf. 19, 21–32 (1998).

    Google Scholar 

  • 50.

    Barra, P., Barros, G., Etcheverry, M. & Nesci, A. Mass production studies in solid substrates with the entomopathogenic fungus, Purpureocillium lilacinum. Int. J. Adv. Agric. Res. 6, 78–84 (2018).

    Google Scholar 

  • 51.

    Jackson, M. A. Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. J. Ind. Microbiol. Biotechnol. 19, 180–187 (1997).

    CAS 

    Google Scholar 

  • 52.

    Goettel, M. S. & Inglis, D. G. Fungi: Hyphomycetes. Manual of Techniques in Insect Pathology https://doi.org/10.1016/B978-012432555-5/50013-0 (1997).

    Article 

    Google Scholar 

  • 53.

    Fargues, J., Maniania, N., Delmas, J. & Smits, N. Influence de la température sur la croissance in vitro d’hyphomycètes entomopathogènes. Agronomie 12, 557–564 (1992).

    Google Scholar 

  • 54.

    Santana, P. A., Kumar, L., Da Silva, R. S. & Picanço, M. C. Global geographic distribution of Tuta absoluta as affected by climate change. J. Pest Sci. 92, 1373–1385 (2018).

    Google Scholar 

  • 55.

    Migiro, L. N., Maniania, N. K., Chabi-Olaye, A. & Vandenberg, J. Pathogenicity of entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana (Hypocreales: Clavicipitaceae) isolates to the adult pea leafminer (Diptera: Agromyzidae) and prospects of an autoinoculation device for infection in the field. Environ. Entomol. 39, 468–475 (2010).

    PubMed 
    CAS 

    Google Scholar 

  • 56.

    Campbell, A., Frazer, B. D., Gilbert, N., Gutierrez, A. P. & Mackauer, M. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431–438 (1974).

    Google Scholar 

  • 57.

    Brière, J.-F., Pracros, P., Le Roux, A.-Y. & Pierre, J.-S. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22–29 (1999).

    Google Scholar 

  • 58.

    Archontoulis, S. V. & Miguez, F. E. Nonlinear regression models and applications in agricultural research. Agron. J. 107, 786–798 (2015).

    Google Scholar 

  • 59.

    Logan, J. A., Wollkind, D. J., Hoyt, S. C. & Tanigoshi, L. K. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133–1140 (1976).

    Google Scholar 

  • 60.

    Steiniger, S. & Hunter, A. J. S. Free and open source GIS software for building a spatial data infrastructure. in Geospatial Free and Open Source Software in the 21st Century 247–261 (2012).

  • 61.

    Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267 (1925).

    CAS 

    Google Scholar 

  • 62.

    R Core Team. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/. (2019).


  • Source: Ecology - nature.com

    Scientists and musicians tackle climate change together

    Climate modeling confirms historical records showing rise in hurricane activity