in

Temperature, moisture and freeze–thaw controls on CO2 production in soil incubations from northern peatlands

  • 1.

    Huang, J. et al. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Chang. 7(12), 875–879. https://doi.org/10.1038/s41558-017-0009-5 (2017).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Zhang, X. et al. Changes in temperature and precipitation across Canada. In Canada’s Changing Climate Report (eds Bush, E. & Lemmen, D. S.) 112–193 (Ottawa, 2019).

    Google Scholar 

  • 3.

    Koenigk, T. et al. Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Clim. Dyn. 40(11–12), 2719–2743. https://doi.org/10.1007/s00382-012-1505-y (2013).

    Article 

    Google Scholar 

  • 4.

    Arndt, K. A., Lipson, D. A., Hashemi, J., Oechel, W. C. & Zona, D. Snow melt stimulates ecosystem respiration in Arctic ecosystems. Glob. Change Biol. 26(9), 5042–5051. https://doi.org/10.1111/gcb.15193 (2020).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Commane, R. et al. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proc. Natl. Acad. Sci. U.S.A. 114(21), 5361–5366. https://doi.org/10.1073/pnas.1618567114 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Euskirchen, E. S., Bret-Harte, M. S., Shaver, G. R., Edgar, C. W. & Romanovsky, V. E. Long-term release of carbon dioxide from Arctic Tundra Ecosystems in Alaska. Ecosystems 20(5), 960–974. https://doi.org/10.1007/s10021-016-0085-9 (2017).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Webb, E. E. et al. Increased wintertime CO2 loss as a result of sustained tundra warming. J. Geophys. Res. Biogeosci. 121, 249–265. https://doi.org/10.1002/2014JG002795 (2016).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9(11), 852–857. https://doi.org/10.1038/s41558-019-0592-8 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Rafat, A. et al. Non-growing season carbon emissions in a northern peatland are projected to increase under global warming. Nature Communications Earth & Enviornment 2(1), 111. https://doi.org/10.1038/s43247-021-00184-w (2021).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Yarwood, S. A. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: A critical review. FEMS Microbiol. Ecol. 94(11), 1–17. https://doi.org/10.1093/femsec/fiy175 (2018).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Yu, Z. C. Northern peatland carbon stocks and dynamics: A review. Biogeosciences 9(10), 4071–4085. https://doi.org/10.5194/bg-9-4071-2012 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Keenan, T. F. & Williams, C. A. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 43, 219–243. https://doi.org/10.1146/annurev-environ-102017-030204 (2018).

    Article 

    Google Scholar 

  • 13.

    Stocker, B. D., Yu, Z., Massa, C. & Joos, F. Holocene peatland and ice-core data constraints on the timing and magnitude of CO2 emissions from past land use. Proc. Natl. Acad. Sci. 114(7), 1492–1497. https://doi.org/10.1073/pnas.1613889114 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Webster, K. L. et al. Spatially-integrated estimates of net ecosystem exchange and methane fluxes from Canadian peatlands. Carbon Balance Manage. 13(1), 5. https://doi.org/10.1186/s13021-018-0105-5 (2018).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Byun, E., Finkelstein, S. A., Cowling, S. A. & Badiou, P. Potential carbon loss associated with post-settlement wetland conversion in southern Ontario, Canada. Carbon Balance Manag 13(1), 6. https://doi.org/10.1186/s13021-018-0094-4 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Lei, J. et al. Temporal changes in global soil respiration since 1987. Nat. Commun. 12(1), 1–9. https://doi.org/10.1038/s41467-020-20616-z (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Bona, K. A. et al. The Canadian model for peatlands (CaMP): A peatland carbon model for national greenhouse gas reporting. Ecol. Model. 431, 109164. https://doi.org/10.1016/j.ecolmodel.2020.109164 (2020).

    Article 

    Google Scholar 

  • 18.

    Brooks, P. D., McKnight, D. & Elder, K. Carbon limitation of soil respiration under winter snowpacks: Potential feedbacks between growing season and winter carbon fluxes. Glob. Change Biol. 11(2), 231–238. https://doi.org/10.1111/j.1365-2486.2004.00877.x (2005).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Helbig, M. et al. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest–wetland landscape. Glob. Change Biol. 23(8), 3231–3248. https://doi.org/10.1111/gcb.13638 (2017).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Zhang, T., Wang, G., Yang, Y., Mao, T. & Chen, X. Non-growing season soil CO2 flux and its contribution to annual soil CO2 emissions in two typical grasslands in the permafrost region of the Qinghai-Tibet Plateau. Eur. J. Soil Biol. 71, 45–52. https://doi.org/10.1016/j.ejsobi.2015.10.004 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Grosse, G. et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res. 116, G00K06. https://doi.org/10.1029/2010JG001507 (2011).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Hamdi, S., Moyano, F., Sall, S., Bernoux, M. & Chevallier, T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol. Biochem. 58, 115–126. https://doi.org/10.1016/j.soilbio.2012.11.012 (2013).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Conant, R. T. et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 17(11), 3392–3404. https://doi.org/10.1111/j.1365-2486.2011.02496.x (2011).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081), 165–173. https://doi.org/10.1038/nature04514 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Fang, C., Smith, P., Moncrieff, J. B. & Smith, J. U. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433(7021), 57–59. https://doi.org/10.1038/nature03138 (2005).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Chang. 7(11), 817–822. https://doi.org/10.1038/nclimate3421 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 27.

    Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Change Biol. 26(3), 1873–1885. https://doi.org/10.1111/gcb.14838 (2020).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Li, J., Pei, J., Pendall, E., Fang, C. & Nie, M. Spatial heterogeneity of temperature sensitivity of soil respiration: A global analysis of field observations. Soil Biol. Biochem. 141, 107675. https://doi.org/10.1016/j.soilbio.2019.107675 (2020).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Niu, B. et al. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Sci. Adv. 7(15), eabc7358. https://doi.org/10.1126/sciadv.abc7358 (2021).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Wang, J., Wu, Q., Yuan, Z. & Kang, H. Soil respiration of alpine meadow is controlled by freeze-Thaw processes of active layer in the permafrost region of the Qinghai-Tibet Plateau. Cryosphere 14(9), 2835–2848. https://doi.org/10.5194/tc-14-2835-2020 (2020).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Wang, Q. et al. Global synthesis of temperature sensitivity of soil organic carbon decomposition: Latitudinal patterns and mechanisms. Funct. Ecol. 33(3), 514–523. https://doi.org/10.1111/1365-2435.13256 (2019).

    Article 

    Google Scholar 

  • 32.

    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 6(8), 751–758. https://doi.org/10.1038/nclimate3071 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Pi, K. et al. The cold region critical zone in transition: Responses to climate warming and land use change. Annu. Rev. Environ. Resour. 46(1), 1–24. https://doi.org/10.1146/annurev-environ-012220-125703 (2021).

    Article 

    Google Scholar 

  • 34.

    Fuss, C. B. et al. Nitrate and dissolved organic carbon mobilization in response to soil freezing variability. Biogeochemistry 131(1–2), 35–47. https://doi.org/10.1007/s10533-016-0262-0 (2016).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Meyer, N., Welp, G. & Amelung, W. The Temperature sensitivity (Q10) of soil respiration: Controlling factors and spatial prediction at regional scale based on environmental soil classes. Glob. Biogeochem. Cycles 32(2), 306–323. https://doi.org/10.1002/2017GB005644 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Moyano, F. E. et al. The moisture response of soil heterotrophic respiration: Interaction with soil properties. Biogeosciences 9(3), 1173–1182. https://doi.org/10.5194/bg-9-1173-2012 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Schipper, L. A. et al. Shifts in temperature response of soil respiration between adjacent irrigated and non-irrigated grazed pastures. Agr. Ecosyst. Environ. 285, 106620. https://doi.org/10.1016/j.agee.2019.106620 (2019).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Alster, C. J., von Fischer, J. C., Allison, S. D. & Treseder, K. K. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob. Change Biol. 26(6), 3221–3229. https://doi.org/10.1111/gcb.15053 (2020).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Baldwin, K. et al. Vegetation Zones of Canada: a Biogeoclimatic Perspective. Sault Ste. Marie, ON, Canada: Natural Resources Canada, Canadian Forest Service. Great Lake Forestry Center. https://open.canada.ca/data/en/dataset/22b0166b-9db3-46b7-9baf-6584a3acc7b1 (2019).

  • 40.

    Beck, H. E. et al. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12. https://doi.org/10.1038/sdata.2018.214 (2018).

    Article 

    Google Scholar 

  • 41.

    Gardner, W. H. Water content. In Methods of soil analysis: Physical and mineralogical methods, agronomy series 9 (Part 1) (ed. Klute, A.) 493–544 (Soil Science Society of America, 1986). https://doi.org/10.2136/sssabookser5.1.2ed.c21.

    Chapter 

    Google Scholar 

  • 42.

    Webster, K. L., Creed, I. F., Bourbonnière, R. A. & Beall, F. D. Controls on the heterogeneity of soil respiration in a tolerant hardwood forest. J. Geophys. Res. 113(G3), G03018. https://doi.org/10.1029/2008JG000706 (2008).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Quinton, W. L. & Baltzer, J. L. The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada). Hydrogeol. J. 21(1), 201–220. https://doi.org/10.1007/s10040-012-0935-2 (2013).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Davidson, E. A., Savage, K., Verchot, L. V. & Navarro, R. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric. For. Meteorol. 113(1–4), 21–37. https://doi.org/10.1016/S0168-1923(02)00100-4 (2002).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Rezanezhad, F., Couture, R. M., Kovac, R., O’Connell, D. & Van Cappellen, P. Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system. J. Hydrol. 509, 245–256. https://doi.org/10.1016/j.jhydrol.2013.11.036 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 46.

    Fang, C. & Moncrieff, J. B. The dependence of soil CO2 efflux on temperature. Soil Biol. Biochem. 33(2), 155–165. https://doi.org/10.1016/S0038-0717(00)00125-5 (2001).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Alster, C. J., Koyama, A., Johnson, N. G., Wallenstein, M. D. & von Fischer, J. C. Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration. J. Geophys. Res. Biogeosci. 121(6), 1420–1433. https://doi.org/10.1002/2016JG003343 (2016).

    Article 

    Google Scholar 

  • 48.

    Hobbs, J. K. et al. Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates. ACS Chem. Biol. 8(11), 2388–2393. https://doi.org/10.1021/cb4005029 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Robinson, J. M. et al. Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year. Biogeochemistry 133(1), 101–112. https://doi.org/10.1007/s10533-017-0314-0 (2017).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Schipper, L. A., Hobbs, J. K., Rutledge, S. & Arcus, V. L. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob. Change Biol. 20(11), 3578–3586. https://doi.org/10.1111/gcb.12596 (2014).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Webster, K. L., Creed, I. F., Malakoff, T. & Delaney, K. Potential Vulnerability of Deep Carbon Deposits of Forested Swamps to Drought. Soil Sci. Soc. Am. J. 78(3), 1097–1107. https://doi.org/10.2136/sssaj2013.10.0436 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 52.

    Loranty, M. M. et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15(17), 5287–5313. https://doi.org/10.5194/bg-15-5287-2018 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 53.

    Roy-Léveillée, P., Burn, C. R. & Mcdonald, I. D. Vegetation-Permafrost Relations within the Forest-Tundra Ecotone near Old Crow, Northern Yukon, Canada. Permafr. and Periglac. Process. 25(2), 127–135. https://doi.org/10.1002/ppp.1805 (2014).

    Article 

    Google Scholar 

  • 54.

    Zhang, Y., Sherstiukov, A. B., Qian, B., Kokelj, S. V. & Lantz, T. C. Impacts of snow on soil temperature observed across the circumpolar north. Environ. Res. Lett. 13(4), 1e7. https://doi.org/10.1088/1748-9326/aab1e7 (2018).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Sjögersten, S. et al. Temperature response of ex-situ greenhouse gas emissions from tropical peatlands: Interactions between forest type and peat moisture conditions. Geoderma 324, 47–55. https://doi.org/10.1016/j.geoderma.2018.02.029 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 56.

    Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3(2), 223–231. https://doi.org/10.1038/s41559-018-0771-4 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 57.

    Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Chang. 3(4), 395–398. https://doi.org/10.1038/nclimate1796 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 58.

    Moinet, G. Y. K. et al. Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Sci. Total Environ. 704, 135460. https://doi.org/10.1016/j.scitotenv.2019.135460 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 59.

    Naylor, D. et al. Soil microbiomes under climate change and implications for carbon cycling. Annu. Rev. Environ. Resour. 45, 29–59. https://doi.org/10.1146/annurev-environ-012320-082720 (2020).

    Article 

    Google Scholar 

  • 60.

    Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 1–16. https://doi.org/10.3389/fmicb.2013.00333 (2013).

    Article 

    Google Scholar 

  • 61.

    Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234 (2017).

    Article 

    Google Scholar 

  • 62.

    Hararuk, O., Shaw, C. & Kurz, W. A. Constraining the organic matter decay parameters in the CBM-CFS3 using Canadian National Forest Inventory data and a Bayesian inversion technique. Ecol. Model. 364, 1–12. https://doi.org/10.1016/j.ecolmodel.2017.09.008 (2017).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Franzluebbers, A. J. Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Appl. Soil. Ecol. 11(1), 91–101. https://doi.org/10.1016/S0929-1393(98)00128-0 (1999).

    Article 

    Google Scholar 

  • 64.

    Rezanezhad, F. et al. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chem. Geol. 429, 75–84. https://doi.org/10.1016/j.chemgeo.2016.03.010 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 65.

    Stirling, E., Fitzpatrick, R. W. & Mosley, L. M. Drought effects on wet soils in inland wetlands and peatlands. Earth Sci. Rev. 210, 103387. https://doi.org/10.1016/j.earscirev.2020.103387 (2020).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Wickland, K. P. & Neff, J. C. Decomposition of soil organic matter from boreal black spruce forest: Environmental and chemical controls. Biogeochemistry 87(1), 29–47. https://doi.org/10.1007/s10533-007-9166-3 (2008).

    Article 

    Google Scholar 

  • 67.

    Arnold, C., Ghezzehei, T. A. & Berhe, A. A. Decomposition of distinct organic matter pools is regulated by moisture status in structured wetland soils. Soil Biol. Biochem. 81, 28–37. https://doi.org/10.1016/j.soilbio.2014.10.029 (2015).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Moyano, F. E., Manzoni, S. & Chenu, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biol. Biochem. 59, 72–85. https://doi.org/10.1016/j.soilbio.2013.01.002 (2013).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Sierra, C. A., Malghani, S. & Loescher, H. W. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil. Biogeosciences 14(3), 703–710. https://doi.org/10.5194/bg-14-703-2017 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 70.

    McCarter, C. P. R. et al. Pore-scale controls on hydrological and geochemical processes in peat: Implications on interacting processes. Earth Sci. Rev. 207, 103227. https://doi.org/10.1016/j.earscirev.2020.103227 (2020).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Strack, M. et al. Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrol. Process. 22(17), 3373–3385. https://doi.org/10.1002/hyp.6931 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 72.

    Leclair, M., Whittington, P. & Price, J. Hydrological functions of a mine-impacted and natural peatland-dominated watershed, James Bay Lowland. J. Hydrol. Reg. Stud. 4, 732–747. https://doi.org/10.1016/j.ejrh.2015.10.006 (2015).

    Article 

    Google Scholar 

  • 73.

    Treat, C. C. et al. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils. J. Geophys. Res. Biogeosci. 121(1), 78–94. https://doi.org/10.1002/2015JG003061 (2016).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11(1), 1–5. https://doi.org/10.1038/s41467-020-15499-z (2020).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Chang. 6(10), 950–953. https://doi.org/10.1038/nclimate3054 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 76.

    Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Knox, S. H. & Baldocchi, D. D. A biogeochemical compromise: The high methane cost of sequestering carbon in restored wetlands. Geophys. Res. Lett. 45, 6081–6091. https://doi.org/10.1029/2018GL077747 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 77.

    Davidson, E. A., Samanta, S., Caramori, S. S. & Savage, K. The Dual Arrhenius and Michaelis-Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob. Change Biol. 18, 371–384. https://doi.org/10.1111/j.1365-2486.2011.02546.x (2012).

    ADS 
    Article 

    Google Scholar 

  • 78.

    Matzner, E. & Borken, W. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. Eur. J. Soil Sci. 59(2), 274–284. https://doi.org/10.1111/j.1365-2389.2007.00992.x (2008).

    Article 

    Google Scholar 

  • 79.

    Song, Y., Zou, Y., Wang, G. & Yu, X. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: A meta-analysis. Soil Biol. Biochem. 109, 35–49. https://doi.org/10.1016/j.soilbio.2017.01.020 (2017).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Wang, J. et al. Effects of freezing-thawing cycle on peatland active organic carbon fractions and enzyme activities in the Da Xing’anling Mountains. Northeast China. Environmental Earth Sciences 72(6), 1853–1860. https://doi.org/10.1007/s12665-014-3094-z (2014).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Wu, H., Xu, X., Cheng, W., Fu, P. & Li, F. Antecedent soil moisture prior to freezing can affect quantity, composition and stability of soil dissolved organic matter during thaw. Sci. Rep. 7(1), 1–12. https://doi.org/10.1038/s41598-017-06563-8 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 82.

    Bao, T., Xu, X., Jia, G., Billesbach, D. P. & Sullivan, R. C. Much stronger tundra methane emissions during autumn freeze than spring thaw. Glob. Change Biol. 27(2), 376–387. https://doi.org/10.1111/gcb.15421 (2021).

    ADS 
    Article 

    Google Scholar 

  • 83.

    Chang, K. Y., Riley, W. J., Crill, P. M., Grant, R. F. & Saleska, S. R. Hysteretic temperature sensitivity of wetland CH4 fluxes explained by substrate availability and microbial activity. Biogeosciences 17(22), 5849–5860. https://doi.org/10.5194/bg-17-5849-2020 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 84.

    Neumann, R. B. et al. Warming Effects of Spring Rainfall Increase Methane Emissions From Thawing Permafrost. Geophys. Res. Lett. 46(3), 1393–1401. https://doi.org/10.1029/2018GL081274 (2019).

    ADS 
    Article 

    Google Scholar 

  • 85.

    Rezanezhad, F., Price, J. S. & Craig, J. R. The effects of dual porosity on transport and retardation in peat: A laboratory experiment. Can. J. Soil Sci. 92(5), 723–732. https://doi.org/10.4141/CJSS2011-050 (2012).

    Article 

    Google Scholar 

  • 86.

    Raz-Yaseef, N. et al. Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska. Geophys. Res. Lett. 44(1), 504–513. https://doi.org/10.1002/2016GL071220 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 87.

    Waldrop, M. P. et al. Carbon fluxes and microbial activities from boreal peatlands experiencing permafrost thaw. J. Geophys. Res. Biogeosci. 126(3), e2020JG005869. https://doi.org/10.1029/2020JG005869 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 88.

    Pulliainen, J. et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature 581(7808), 294–298. https://doi.org/10.1038/s41586-020-2258-0 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    SMART researchers develop method for early detection of bacterial infection in crops

    Scientists and musicians tackle climate change together