in

Temperature thresholds of ecosystem respiration at a global scale

[adace-ad id="91168"]
  • 1.

    Cao, M. & Woodward, F. I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249–252 (1998).

    CAS  Article  Google Scholar 

  • 2.

    Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    CAS  Article  Google Scholar 

  • 3.

    Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).

    Article  Google Scholar 

  • 4.

    Enquist, B. J. et al. Scaling metabolism from organisms to ecosystems. Nature 423, 639–642 (2003).

    CAS  Article  Google Scholar 

  • 5.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    CAS  Article  Google Scholar 

  • 6.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  • 7.

    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Article  Google Scholar 

  • 8.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    CAS  Article  Google Scholar 

  • 9.

    Lenton, T. M. & Huntingford, C. Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob. Change Biol. 9, 1333–1352 (2003).

    Article  Google Scholar 

  • 10.

    Song, B. et al. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration. J. Plant Ecol. 7, 419–428 (2014).

    Article  Google Scholar 

  • 11.

    Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).

  • 12.

    Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).

    CAS  Article  Google Scholar 

  • 13.

    Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).

    CAS  Article  Google Scholar 

  • 14.

    Johnston, A. S. A. & Sibly, R. M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat. Ecol. Evol. 2, 1597–1602 (2018).

    Article  Google Scholar 

  • 15.

    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).

    CAS  Article  Google Scholar 

  • 16.

    Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Change Biol. 22, 3829–3842 (2016).

    Article  Google Scholar 

  • 17.

    Gill, A. L. & Finzi, A. C. Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecol. Lett. 19, 1419–1428 (2016).

    Article  Google Scholar 

  • 18.

    Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).

    CAS  Article  Google Scholar 

  • 19.

    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

    CAS  Article  Google Scholar 

  • 20.

    Michaletz, S. T., Cheng, D., Kerkhoff, A. J. & Enquist, B. J. Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–43 (2014).

    CAS  Article  Google Scholar 

  • 21.

    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Article  Google Scholar 

  • 22.

    Monson, R. K. et al. Winter forest soil respiration controlled by climate and microbial community composition. Nature 439, 711–714 (2006).

    CAS  Article  Google Scholar 

  • 23.

    Mauder, M. et al. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. Meteorol. 169, 122–135 (2013).

    Article  Google Scholar 

  • 24.

    Kim, D.-G., Vargas, R., Bond-Lamberty, B. & Turetsky, M. R. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9, 2459–2483 (2012).

    CAS  Article  Google Scholar 

  • 25.

    Du, E. et al. Winter soil respiration during soil-freezing process in a boreal forest in Northeast China. J. Plant Ecol. 6, 349–357 (2013).

    Article  Google Scholar 

  • 26.

    Schuur, E. A. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    CAS  Article  Google Scholar 

  • 27.

    Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).

    CAS  Article  Google Scholar 

  • 28.

    Bond-Lamberty, B. P. & Thomson, A. M. A Global Database of Soil Respiration Data Version 4.0 (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/1578

  • 29.

    Zhang, Z. et al. A temperature threshold to identify the driving climate forces of the respiratory process in terrestrial ecosystems. Eur. J. Soil Biol. 89, 1–8 (2018).

    Article  Google Scholar 

  • 30.

    Yang, Y., Donohue, R. J., McVicar, T. R., Roderick, M. L. & Beck, H. E. Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests. J. Geophys. Res. Biogeosci. 121, 2125–2140 (2016).

    Article  Google Scholar 

  • 31.

    Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).

    CAS  Article  Google Scholar 

  • 32.

    Padfield, D. et al. Metabolic compensation constrains the temperature dependence of gross primary production. Ecol. Lett. 20, 1250–1260 (2017).

    Article  Google Scholar 

  • 33.

    Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).

    CAS  Article  Google Scholar 

  • 34.

    Huntingford, C. et al. Implications of improved representations of plant respiration in a changing climate. Nat. Commun. 8, 1602 (2017).

    Article  Google Scholar 

  • 35.

    Niu, S. et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol. 194, 775–783 (2012).

    Article  Google Scholar 

  • 36.

    Rind, D. The consequences of not knowing low- and high-latitude climate sensitivity. Bull. Am. Meteorol. Soc. 89, 855–864 (2008).

    Article  Google Scholar 

  • 37.

    Liu, Z. et al. Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition. Glob. Change Biol. 26, 682–696 (2020).

    Article  Google Scholar 

  • 38.

    Haverd, V. et al. Higher than expected CO2 fertilization inferred from leaf to global observations. Glob. Change Biol. 26, 2390–2402 (2020).

    Article  Google Scholar 

  • 39.

    Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020).

    Article  Google Scholar 

  • 40.

    Climate Research Unit, University of East Anglia Average Annual Temperature. Atlas Biosphere (Center for Sustainability and the Global Environment, accessed 6 February 2020); https://nelson.wisc.edu/sage/data-and-models/atlas/maps.php


  • Source: Ecology - nature.com

    Synergistic epistasis enhances the co-operativity of mutualistic interspecies interactions

    Keeping an eye on the fusion future