in

Temperatures that sterilize males better match global species distributions than lethal temperatures

  • 1.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article 

    Google Scholar 

  • 2.

    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).

    Article 

    Google Scholar 

  • 3.

    Nowakowski, A. J. et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol. Lett. 21, 345–355 (2018).

    Article 

    Google Scholar 

  • 4.

    Metelmann, S. et al. The UK’s suitability for Aedes albopictus in current and future climates. J. R. Soc. Interface 16, 20180761 (2019).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Kellermann, V. et al. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl Acad. Sci. USA 109, 16228–16233 (2012).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Lancaster, L. T. & Humphreys, A. M. Global variation in the thermal tolerances of plants. Proc. Natl Acad. Sci. USA 117, 13580–13587 (2020).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Rezende, E. L., Bozinovic, F., Szilàgyi, A. & Santos, M. Predicting temperature mortality and selection in natural Drosophila populations. Science 369, 1242–1245 (2020).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Jørgensen, L. B., Malte, H. & Overgaard, J. How to assess Drosophila heat tolerance: unifying static and dynamic tolerance assays to predict heat distribution limits. Funct. Ecol. 33, 629–642 (2019).

    Article 

    Google Scholar 

  • 10.

    Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).

    Article 

    Google Scholar 

  • 11.

    Terblanche, J. S. & Hoffmann, A. A. Validating measurements of acclimation for climate change adaptation. Curr. Opin. Insect Sci. 41, 7–16 (2020).

    Article 

    Google Scholar 

  • 12.

    Walsh, B. S. et al. The impact of climate change on fertility. Trends Ecol. Evol. 34, 249–259 (2019).

    Article 

    Google Scholar 

  • 13.

    Sage, T. L. et al. The effect of high temperature stress on male and female reproduction in plants. Field Crops Res. 182, 30–42 (2015).

    Article 

    Google Scholar 

  • 14.

    Sales, K. et al. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat. Commun. 9, 4771 (2018).

    Article 

    Google Scholar 

  • 15.

    Porcelli, D., Gaston, K. J., Butlin, R. K. & Snook, R. R. Local adaptation of reproductive performance during thermal stress. J. Evol. Biol. 30, 422–429 (2016).

    Article 

    Google Scholar 

  • 16.

    Saxon, A. D., O’Brien, E. K. & Bridle, J. R. Temperature fluctuations during development reduce male fitness and may limit adaptive potential in tropical rainforest Drosophila. J. Evol. Biol. 31, 405–415 (2018).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Breckels, R. D. & Neff, B. D. The effects of elevated temperature on the sexual traits, immunology and survivorship of a tropical ectotherm. J. Exp. Biol. 216, 2658–2664 (2013).

    Article 

    Google Scholar 

  • 18.

    Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511–516 (2016).

    Article 

    Google Scholar 

  • 19.

    Hurley, L. L., McDiarmid, C. S., Friesen, C. R., Griffith, S. C. & Rowe, M. Experimental heatwaves negatively impact sperm quality in the zebra finch. Proc. R. Soc. Lond. B 285, 20172547 (2018).

    Google Scholar 

  • 20.

    Yogev, L. et al. Seasonal variations in pre‐ and post‐thaw donor sperm quality. Hum. Reprod. 19, 880–885 (2004).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Terblanche, J. S., Deere, J. A., Clusella Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. R. Soc. Lond. B 274, 2935–2942 (2007).

    Google Scholar 

  • 22.

    Ives, A. R. R2s for correlated data: phylogenetic models, LMMs, and GLMMs. Syst. Biol. 68, 234–251 (2019).

    Article 

    Google Scholar 

  • 23.

    Dillon, M. E., Wang, G., Garrity, P. A. & Huey, R. B. Thermal preference in Drosophila. J. Therm. Biol. 34, 109–119 (2009).

    Article 

    Google Scholar 

  • 24.

    Tratter-Kinzner, M. et al. Is temperature preference in the laboratory ecologically relevant for the field? The case of Drosophila nigrosparsa. Glob. Ecol. Conserv. 18, e00638 (2019).

    Article 

    Google Scholar 

  • 25.

    van Heerwaarden, B. & Sgrò, C. M. Male fertility thermal limits predict vulnerability to climate warming. Nat. Commun. 12, 2214 (2021).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The future of the IoT (batteries not required)

    Startup improving chemical separations wins MIT $100K competition