McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett. 2007;10:995–1015.
Google Scholar
Magurran AE, Henderson PA. Explaining the excess of rare species in natural species abundance distributions. Nature. 2003;422:714–6.
Google Scholar
Nakadai R, Okazaki Y, Matsuoka S. Describing macroecological patterns in microbes: Approaches for comparative analyses of operational taxonomic unit read number distribution with a case study of global oceanic bacteria. Environ DNA. 2020;2:535–43.
Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.
Google Scholar
Zhou J, Ning D. Stochastic community assembly: Does it matter in microbial ecology? Micro Mol Biol Rev. 2017;81:1–32.
Fukami T. Assembly history interacts with ecosystem size to influence species diversity. Ecology. 2004;85:3234–42.
Shade A, Gilbert JA. Temporal patterns of rarity provide a more complete view of microbial diversity. Trends Microbiol. 2015;23:335–40.
Google Scholar
Comte J, Berga M, Severin I, Logue JB, Lindström ES. Contribution of different bacterial dispersal sources to lakes: Population and community effects in different seasons. Environ Microbiol. 2017;19:2391–404.
Google Scholar
Fukami T. Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.
Niño-García JP, Ruiz-González C, del Giorgio PA. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME J. 2016;10:1755–66.
Google Scholar
Ruiz-González C, Niño-García JP, Berggren M, del Giorgio PA. Contrasting dynamics and environmental controls of dispersed bacteria along a hydrologic gradient. Adv Ocean Limnol. 2017;8:222–34.
Ruiz-González C, Niño-García JP, del Giorgio PA. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol Lett. 2015;18:1198–206.
Google Scholar
Crump BC, Amaral-Zettler LA, Kling GW. Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J. 2012;6:1629–39.
Google Scholar
Besemer K, Singer G, Quince C, Bertuzzo E, Sloan W, Battin TJ. Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proc R Soc B. 2013;280:20131760.
Google Scholar
Wisnoski NI, Muscarella ME, Larsen ML, Peralta AL, Lennon JT. Metabolic insight into bacterial community assembly across ecosystem boundaries. Ecology. 2020;101:e02968.
Google Scholar
Nelson CE, Sadro S, Melack JM. Contrasting the influences of stream inputs and landscape position on bacterioplankton community structure and dissolved organic matter composition in high-elevation lake chains. Limnol Oceanogr. 2009;54:1292–305.
Google Scholar
de Melo ML, Bertilsson S, Amaral JHF, Barbosa PM, Forsberg BR, Sarmento H. Flood pulse regulation of bacterioplankton community composition in an Amazonian floodplain lake. Freshw Biol. 2019;64:108–20.
Caillon F, Besemer K, Peduzzi P, Schelker J. Soil microbial inoculation during flood events shapes headwater stream microbial communities and diversity. Microb Ecol. 2021;82:591–601.
Google Scholar
Vass M, Langenheder S. The legacy of the past: effects of historical processes on microbial metacommunities. Aquat Micro Ecol. 2017;79:13–19.
Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79.
Google Scholar
Niño-García JP, Ruiz-González C, del Giorgio PA. Landscape-scale spatial abundance distributions discriminate core from random components of boreal lake bacterioplankton. Ecol Lett. 2016;19:1506–15.
Google Scholar
Mansour I, Heppell CM, Ryo M, Rillig MC. Application of the microbial community coalescence concept to riverine networks. Biol Rev. 2018;93:1832–45.
Google Scholar
Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, et al. Global patterns in the biogeography of bacterial taxa. Environ Microbiol. 2011;13:135–44.
Google Scholar
Shade A, Gregory Caporaso J, Handelsman J, Knight R, Fierer N. A meta-analysis of changes in bacterial and archaeal communities with time. ISME J. 2013;7:1493–506.
Google Scholar
Logue JB, Lindström ES. Species sorting affects bacterioplankton community composition as determined by 16S rDNA and 16S rRNA fingerprints. ISME J. 2010;4:729–38.
Google Scholar
Adams HE, Crump BC, Kling GW. Metacommunity dynamics of bacteria in an arctic lake: The impact of species sorting and mass effects on bacterial production and biogeography. Front Microbiol. 2014;5:82.
Google Scholar
Langenheder S, Wang J, Karjalainen SM, Laamanen TM, Tolonen KT, Vilmi A, et al. Bacterial metacommunity organization in a highly connected aquatic system. FEMS Microbiol Ecol. 2017;93:1–9.
Winter C, Hein T, Kavka G, Mach RL, Farnleitner AH. Longitudinal changes in the bacterial community composition of the Danube River: a whole-river approach. Appl Environ Microbiol. 2007;73:421–31.
Google Scholar
Savio D, Sinclair L, Ijaz UZ, Parajka J, Reischer GH, Stadler P, et al. Bacterial diversity along a 2600 km river continuum. Environ Microbiol. 2015;17:4994–5007.
Google Scholar
Hauptmann AL, Markussen TN, Stibal M, Olsen NS, Elberling B, Bælum J, et al. Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary. Front Microbiol. 2016;7:1–16.
Doherty M, Yager PL, Moran MA, Coles VJ, Fortunato CS, Krusche AV, et al. Bacterial biogeography across the Amazon river-ocean continuum. Front Microbiol. 2017;8:882.
Google Scholar
Gweon HS, Bowes MJ, Moorhouse HL, Oliver AE, Bailey MJ, Acreman MC, et al. Contrasting community assembly processes structure lotic bacteria metacommunities along the river continuum. Environ Microbiol. 2021;23:484–98.
Google Scholar
Widder S, Besemer K, Singer GA, Ceola S, Bertuzzo E, Quince C, et al. Fluvial network organization imprints on microbial co-occurrence networks. Proc Natl Acad Sci. 2014;111:12799–804.
Google Scholar
Read DS, Gweon HS, Bowes MJ, Newbold LK, Field D, Bailey MJ, et al. Catchment-scale biogeography of riverine bacterioplankton. ISME J. 2015;9:516–26.
Google Scholar
Hassell N, Tinker KA, Moore T, Ottesen EA. Temporal and spatial dynamics in microbial community composition within a temperate stream network. Environ Microbiol. 2018;20:3560–72.
Google Scholar
Wisnoski NI, Lennon JT. Microbial community assembly in a multi-layer dendritic metacommunity. Oecologia. 2021;195:13–24.
Google Scholar
Cole JJ. Aquatic microbiology for ecosystem scientists: New and recycled paradigms in ecological microbiology. Ecosystems. 1999;2:215–25.
Jones SE, Lennon JT. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci. 2010;107:5881–6.
Google Scholar
Bowsher AW, Kearns PJ, Shade A. 16S rRNA/rRNA gene ratios and cell activity staining reveal consistent patterns of microbial activity in plant-associated soil. mSystems. 2019;4:e00003–19.
Google Scholar
Székely AJ, Berga M, Langenheder S. Mechanisms determining the fate of dispersed bacterial communities in new environments. ISME J. 2013;7:61–71.
Google Scholar
Aanderud ZT, Vert JC, Lennon JT, Magnusson TW, Breakwell DP, Harker AR. Bacterial dormancy is more prevalent in freshwater than hypersaline lakes. Front Microbiol. 2016;7:853.
Google Scholar
Denef VJ, Fujimoto M, Berry MA, Schmidt ML. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA ratios among freshwater lake bacteria. Front Microbiol. 2016;7:1–13.
Muscarella ME, Jones SE, Lennon JT. Species sorting along a subsidy gradient alters bacterial community stability. Ecology. 2016;97:2034–43.
Google Scholar
Peter H, Jeppesen E, De Meester L, Sommaruga R. Changes in bacterioplankton community structure during early lake ontogeny resulting from the retreat of the Greenland Ice Sheet. ISME J. 2018;12:544–55.
Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2013;17:10–12.
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.
Google Scholar
Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8:352–9.
Murali A, Bhargava A, Wright ES. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome. 2018;6:1–14.
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996.
Google Scholar
Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8:1–10.
Paulson JN, Colin Stine O, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2.
Google Scholar
Bray JR, Curtis JT. An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr. 1957;27:325–49.
Legendre P, Legendre L Numerical ecology, 2nd ed. 1998. Elsevier, Amsterdam.
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019;35:526–8.
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2019.
Tabak J Differential Geometry. Geometry: The language of Space and Form. 2004. Facts on File, Inc, New York, p 150.
Brown BL. Spatial heterogeneity reduces temporal variability in stream insect communities. Ecol Lett. 2003;6:316–25.
Osterholz H, Singer G, Wemheuer B, Daniel R, Simon M, Niggemann J, et al. Deciphering associations between dissolved organic molecules and bacterial communities in a pelagic marine system. ISME J. 2016;10:1717–30.
Google Scholar
Sørensen T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analysis of the vegetation on Danish commons. Biol Skr K Dan Vidensk Selsk. 1948;5:1–34.
R Core Team. R: A language and environment for statistical computing. 2020. Vienna.
RStudio Team. RStudio: Integrated development for R. 2020. RStudio, Inc., Boston, MA.
Anderson MJ, Walsh DCI. Anderson and Walsh (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions- What null hypothesis are you.pdf. Ecol Monogr. 2013;83:557–74.
Wilhelm L, Besemer K, Fasching C, Urich T, Singer GA, Quince C, et al. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams. Environ Microbiol. 2014;16:2514–24.
Google Scholar
Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci. 2011;108:12776–81.
Google Scholar
Carrara F, Rinaldo A, Giometto A, Altermatt F. Complex interaction of dendritic connectivity and hierarchical patch size on biodiversity in river-like landscapes. Am Nat. 2013;183:13–25.
Google Scholar
Lindström ES, Forslund M, Algesten G, Bergström A-K. External control of bacterial community structure in lakes. Limnol Oceanogr. 2006;51:339–42.
Hausmann B, Pelikan C, Rattei T, Loy A, Pester M. Long-term transcriptional activity at zero growth of a cosmopolitan rare biosphere member. MBio. 2019;10:e02189–18.
Google Scholar
Luo X, Xiang X, Yang Y, Huang G, Fu K, Che R, et al. Seasonal effects of river flow on microbial community coalescence and diversity in a riverine network. FEMS Microbiol Ecol. 2020;96:1–13.
Paruch L, Paruch AM, Eiken HG, Skogen M, Sørheim R. Seasonal dynamics of lotic bacterial communities assessed by 16S rRNA gene amplicon deep sequencing. Sci Rep. 2020;10:16399.
Google Scholar
Ruiz-González C, Niño-García JP, Kembel SW, del Giorgio PA. Identifying the core seed bank of a complex boreal bacterial metacommunity. ISME J. 2017;11:2012–21.
Google Scholar
Stadler M, Ejarque E, Kainz MJ. In-lake transformations of dissolved organic matter composition in a subalpine lake do not change its biodegradability. Limnol Oceanogr. 2020;65:1554–72.
Google Scholar
Hutchins RHS, Aukes P, Schiff SL, Dittmar T, Prairie YT, del Giorgio PA. The optical, chemical, and molecular dissolved organic matter succession along a boreal soil-stream-river continuum. J Geophys Res Biogeosciences. 2017;122:2892–908.
Google Scholar
Besemer K, Singer G, Limberger R, Chlup A-K, Hochedlinger G, Hödl I, et al. Biophysical controls on community succession in stream biofilms. Appl Environ Microbiol. 2007;73:4966–74.
Google Scholar
Battin TJ, Kaplan LA, Denis Newbold J, Hansen CME. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature. 2003;426:439–42.
Google Scholar
McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Publ Gr. 2011;10:39–50.
Besemer K, Peter H, Logue JB, Langenheder S, Lindström ES, Tranvik LJ, et al. Unraveling assembly of stream biofilm communities. ISME J. 2012;6:1459–68.
Google Scholar
Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB, et al. Understanding how microbiomes influence the systems they inhabit. Nat Microbiol. 2018;3:977–82.
Google Scholar
Stadler M CarBBAS/Paper_Stadler-delGiorgio_ISMEJ_2021. 2021. Zenodo.
Stadler M, Ruiz-González C, Vick-Majors TJ, del Giorgio PA Microbial 16S rRNA gene (DNA) and transcripts (cDNA) along a boreal soil-freshwater-estuary continuum. 2021. Zenodo.
Source: Ecology - nature.com