in

Tetraploids expanded beyond the mountain niche of their diploid ancestors in the mixed-ploidy grass Festuca amethystina L.

  • 1.

    Otto, S. P. Adaptation, speciation and extinction in the Anthropocene. Proc. R. Soc. B 285, 20182047 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Moritz, C. & Agudo, R. The future of species under climate change: Resilience or decline?. Science 341, 504–508 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Parmesan, C. & Hanley, M. E. Plants and climate change: Complexities and surprises. Ann. Bot. 116, 849–864 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Soltis, P. S. & Soltis, D. E. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. U.S.A. 97, 7051–7057 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Barker, M. S., Husband, B. C. & Chris Pires, J. Spreading winge and flying high: The evolutionary importance of polyploidy after a century of study. Am. J. Bot. 103, 1139–1145 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Van De Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 7.

    Madlung, A. Polyploidy and its effect on evolutionary success: Old questions revisited with new tools. Heredity (Edinb) 110, 99–104 (2013).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Soltis, D. E., Visger, C. J., Marchant, B. D. & Soltis, P. S. Polyploidy: Pitfalls and paths to a paradigm. Am. J. Bot. 103, 1146–1166 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Ramsey, J. Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci. U.S.A. 108, 7096–7101 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Oswald, B. P. & Nuismer, S. L. Neopolyploidy and diversification in Heuchera grossulariifolia. Evolution 65, 1667–1679 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Kolář, F., Čertner, M., Suda, J., Schönswetter, P. & Husband, B. C. Mixed-ploidy species: Progress and opportunities in polyploid research. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2017.09.011 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Fowler, N. L. & Levin, D. A. Critical factors in the establishment of allopolyploids. Am. J. Bot. 103, 1236–1251 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Husband, B. C., Baldwin, S. J. & Suda, J. The incidence of polyploidy in natural plant populations: Major patterns and evolutionary processes. In Plant Genome Diversity 2: Physical Structure, Behaviour and Evolution of Plant Genomes (eds Leitch, I. et al.) 255–276 (Springer, 2013).

    Chapter 

    Google Scholar 

  • 14.

    Te Beest, M. et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 109, 19–45 (2012).

    Article 

    Google Scholar 

  • 15.

    Watanabe, K. The cytogeography of the genus Eupatorium (Compositae)—A review. Plant Species Biol. 1, 99–116 (1986).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Novak, S. J., Soltis, D. E. & Soltis, P. S. Ownbey’s Tragopogons: 40 years later. Am. J. Bot. 78, 1586–1600 (1991).

    Article 

    Google Scholar 

  • 17.

    Van Dijk, P. & Bakx-Schotman, T. Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago media. Mol. Ecol. 6, 345–352 (1997).

    Article 

    Google Scholar 

  • 18.

    Martin, S. L. & Husband, B. C. Influence of phylogeny and ploidy on species ranges of North American angiosperms. J. Ecol. 97, 913–922 (2009).

    Article 

    Google Scholar 

  • 19.

    Suda, J., Kron, P., Husband, B. C. & Trávníček, P. Flow cytometry and ploidy: Applications in plant systematics, ecology and evolutionary biology. in Flow Cytometry with Plant Cells 103–130 (Wiley, 2007). https://doi.org/10.1002/9783527610921.ch5.

  • 20.

    Ramsey, J. & Ramsey, T. S. Ecological studies of polyploidy in the 100 years following its discovery. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 1–76 (2014).

    Article 

    Google Scholar 

  • 21.

    Goldblatt, P. Polyploidy in angiosperms: Monocotyledons. In Polyploidy. Basic Life Sciences Vol. 13 (ed. Lewis, W. H.) 219–239 (Springer, 1980).

    Google Scholar 

  • 22.

    Levy, A. A. & Feldman, M. The impact of polyploidy on grass genome evolution. Plant Physiol. 130, 1587–1593 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Kellogg, A. Flowering Plants Monocots Poaceae Vol. 13 (Springer, 2015).

    Google Scholar 

  • 24.

    Estep, M. C. et al. Allopolyploidy, diversification, and the Miocene grassland expansion. Proc. Natl. Acad. Sci. 111, 15149–15154 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Minaya, M. et al. Contrasting dispersal histories of broad- and fine-leaved temperate Loliinae grasses: Range expansion, founder events, and the roles of distance and barriers. J. Biogeogr. 44, 1980–1993 (2017).

    Article 

    Google Scholar 

  • 26.

    Torrecilla, P. & Catalán, P. Phylogeny of broad-leaved and fine-leaved Festuca lineages (Poaceae) based on nuclear ITS sequences. Syst. Bot. 27, 241–251 (2002).

    Google Scholar 

  • 27.

    Šmarda, P., Bureš, P., Horová, L., Foggi, B. & Rossi, G. Genome size and GC content evolution of Festuca: Ancestral expansion and subsequent reduction. Ann. Bot. 101, 421–433 (2008).

  • 28.

    Meusel, H., Jäger, E. & Weinert, E. Vergleichende Chorologie der Zentral-europäischen Flora (G. Fischer, 1965).

    Google Scholar 

  • 29.

    Kiedrzyński, M., Zielińska, K. M., Kiedrzyńska, E. & Jakubowska-Gabara, J. Regional climate and geology affecting habitat availability for a relict plant in a plain landscape: The case of Festuca amethystina L. in Poland. Plant Ecol. Divers. 8, 331–341 (2015).

    Article 

    Google Scholar 

  • 30.

    Kiedrzyński, M., Zielińska, K. M., Rewicz, A. & Kiedrzyńska, E. Habitat and spatial thinning improve the Maxent models performed with incomplete data. J. Geophys. Res. Biogeosci. 122, 1359–1370 (2017).

    Article 

    Google Scholar 

  • 31.

    Petrova, A. & Kozuharov, S. Citotaxonomicno proucvane na balgarski vidove ot roda Festuca L. in IV Nacionalna Konferencija Po Botanika 1 (ed. Trudova) 16–23 (1987).

  • 32.

    Stählin, A. Morphologische und zytologische Untersuchungen an Gramineen. Wiss. Arch. Landwirtschaft., Abt. A, Pflanzenbau 1, 330–398 (1929).

  • 33.

    Wittmann, H. & Strobl, W. Beitrag zur Kenntnis von Festuca amethystina L. im Bundesland Salzburg. Florist. Mitt. Salzburg 9, 3–8 (1984).

  • 34.

    La Sorte, F. A. & Jetz, W. Projected range contractions of montane biodiversity under global warming. Proc. R. Soc. B Biol. Sci. 277, 3401–3410 (2010).

    Article 

    Google Scholar 

  • 35.

    Elsen, P. R. & Tingley, M. W. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772–776 (2015).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Šmarda, P., Müller, J., Vraná, J. & Kočí, K. Ploidy level variability of some Central European fescues (Festuca subg. Festuca, Poaceae). Biologia 60, 1–6 (2005).

    Google Scholar 

  • 37.

    Rewicz, A. et al. Morphometric traits in the fine-leaved fescues depend on ploidy level: The case of Festuca amethystina L. PeerJ 2018, e5576 (2018).

    Article 

    Google Scholar 

  • 38.

    Roleček, J., Dřevojan, P. & Šmarda, P. First record of Festuca amethystina L. from the Transylvanian Basin (Romania). Contrib. Bot. 54, 91–97 (2019).

    Article 

    Google Scholar 

  • 39.

    Phillips, S. J. & Dudík, M. Modeling of species distribution with Maxent: New extensions and a comprehensive evaluation. Ecograpy 31, 161–175 (2008).

    Article 

    Google Scholar 

  • 40.

    Segraves, K. A., Thompson, J. N., Soltis, P. S. & Soltis, D. E. Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia. Mol. Ecol. 8, 253–262 (1999).

    Article 

    Google Scholar 

  • 41.

    Levin, D. A. Minority cytotype exclusion in local plant populations. TAXON vol. 24. https://eurekamag.com/pdf/000/000139096.pdf (1975).

  • 42.

    Pils, G. Systematics, distribution, and karyology of the Festuca violacea Group (Poaceae) in the Eastern Alps. Plant Syst. Evol. 136, 73–124 (1980).

    Article 

    Google Scholar 

  • 43.

    Stebbins, G. L. Chromosomal Evolution in Higher Plants (Addison-Wesley, 1971).

    Google Scholar 

  • 44.

    Stutz, H. C. & Sanderson, S. C. Evolutionary studies in Atriplex: Chromosome races of A. confertifolia (shadscale). Am. J. Bot. 70, 1536–1547 (1983).

    Article 

    Google Scholar 

  • 45.

    Husband, B. C. & Schemske, D. W. Cytotype distribution at a diploid-tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). Am. J. Bot. 85, 1688–1694 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Hardy, O. J., Vanderhoeven, S., De Loose, M. & Meerts, P. Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaurea jacea) from a contact zone in the Belgian Ardennes. New Phytol. 146, 281–290 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Gauthier, P., Lumaret, R. & Bédécarrats, A. Genetic variation and gene flow in Alpine diploid and tetraploid populations of Lotus (L. alpinus (DC) Schleicher/L. corniculatus L.). I. Insights from morphological and allozyme markers. Heredity (Edinb) 80, 683–693 (1998).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Schönswetter, P. et al. Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. J. Plant Res. 120, 721–725 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Petit, C., Bretagnolle, F. & Felber, F. Evolutionary consequences of diploid-polyploid hybrid zones in wild species. Trends Ecol. Evol. 14, 306–311 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Chumová, Z., Krejčíková, J., Mandáková, T., Suda, J. & Trávníček, P. Evolutionary and taxonomic implications of variation in nuclear genome size: Lesson from the grass genus Anthoxanthum (Poaceae). PLoS One 10, e0133748 (2015).

    Article 
    CAS 

    Google Scholar 

  • 51.

    Marchant, D. B., Soltis, D. E. & Soltis, P. S. Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytol. 212, 708–718 (2016).

    Article 
    CAS 

    Google Scholar 

  • 52.

    Arrigo, N. et al. Is hybridization driving the evolution of climatic niche in Alyssum montanum. Am. J. Bot. 103, 1348–1357 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Laport, R. G., Minckley, R. L. & Ramsey, J. Ecological distributions, phenological isolation, and genetic structure in sympatric and parapatric populations of the Larrea tridentata polyploid complex. Am. J. Bot. 103, 1358–1374 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Mosquin, T. Evidence for autopolyploidy in Epilobium angustifolium (Onagraceae). Evolution (N. Y.) 21, 713–719 (1967).

    Google Scholar 

  • 55.

    Szafer, W. The mountain element in the flora of Polish Plain. Rozpr. Wydz. Mat. PAU Ser. 3 Dział B 69, 83–196 (1930).

    Google Scholar 

  • 56.

    Kiedrzyński, M., Zielińska, K. M., Kiedrzyńska, E. & Rewicz, A. Refugial debate: On small sites according to their function and capacity. Evol. Ecol. 31, 815–827 (2017).

    Article 

    Google Scholar 

  • 57.

    Babić, V. P. et al. Temperature and other microclimate conditions in the oak forests on Fruška Gora (Serbia). Therm. Sci. 19, S415–S425 (2015).

    Article 

    Google Scholar 

  • 58.

    Jakubowska-Gabara, J. Decline of Potentillo albae-Quercetum Libb. 1933 phytocoenoses in Poland. Vegetatio 124, 45–59 (1996).

    Article 

    Google Scholar 

  • 59.

    Roleček, J. Formalized classification of thermophilous oak forests in the Czech Republic: What brings the Cocktail method?. Preslia 79, 1–21 (2007).

    Google Scholar 

  • 60.

    Indreica, A. Festuca amethystina in the sessile oak forests from upper basin of Olt River. Contrib. Bot. 42, 11–18 (2007).

    Google Scholar 

  • 61.

    Jakubowska-Gabara, J. Festuca amethystina L. In The Polish Red Book of Plants. Pteridophytes and Vascular Plants (eds Kaźmierczakowa, R. et al.) 616–618 (Institute of Nature Conservation PAS, 2014).

    Google Scholar 

  • 62.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • 63.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 64.

    Wei, T. & Simko, V. R package ‘corrplot’: Visualization of a Correlation Matrix (2017).

  • 65.

    Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO 5 (Cambridge University Press, 2014). https://doi.org/10.1017/CBO9781139627061.

    Book 
    MATH 

    Google Scholar 

  • 66.

    Wilke, C. O. Ridgeline Plots in ‘ggplot2’. https://wilkelab.org/ggridges/index.html (2021).

  • 67.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article 

    Google Scholar 

  • 68.

    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography (Cop.) 40, 887–893 (2017).

    Article 

    Google Scholar 

  • 69.

    Warren, D. L. & Seifert, S. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Soc. Am. 21, 335–342 (2011).

    Google Scholar 

  • 70.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Article 

    Google Scholar 

  • 71.

    Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography (Cop.) 33, 607–611 (2010).

    Google Scholar 

  • 72.

    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography (Cop.) 28, 385–393 (2005).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Crossing disciplines, adding fresh eyes to nuclear engineering

    Predicting building emissions across the US