in

The critical role of natural history museums in advancing eDNA for biodiversity studies: a case study with Amazonian fishes

  • 1.

    Lundberg, J. G., Kottelat, M., Smith, G. R., Stiassny, M. L. J. & Gill, A. C. So many fishes, so little time: An overview of recent ichthyological discovery in continental waters. Ann. Mo. Bot. Gard. 87, 26–62 (2000).

    Article 

    Google Scholar 

  • 2.

    Relyea, R. A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 15, 618–627 (2005).

    Article 

    Google Scholar 

  • 3.

    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Clare, A. I. M. et al. Beyond biodiversity: Can environmental DNA (eDNA) cut it as a population genetics tool?. Genes 10, 192 (2019).

    Article 
    CAS 

    Google Scholar 

  • 5.

    Tsuji, S., Shibata, N., Sawada, H. & Ushio, M. Quantitative evaluation of intraspecific genetic diversity in a natural fish population using environmental DNA. Mol. Ecol. Resour. 20, 1323–1332 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Miya, M., Gotoh, R. O. & Sado, T. MiFish metabarcoding: A high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples. Fish. Sci. 86, 939–970 (2020).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Dagosta F. C. P. & de Pinna, M. C. C. The fishes of the Amazon: Distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist, 431, 1–163 (2019).

  • 8.

    Jézéquel, C., Tedesco, P. A. & Bigorne, R. A database of freshwater fish species of the Amazon Basin. Sci. Data 7, 96 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Reis, R. E., Kullander, S. O. & Ferraris, C. J. Check List of the Freshwater Fishes of South and Central America. (Edipucrs, 2003).

  • 10.

    Tedesco, P. et al. A global database on freshwater fish species occurrence in drainage basins. Sci. Data 4, 170141 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Brito, P. M., Meunier, F. J. & Leal, M. E. C. Origine et diversification de líchthyofaune Neotropical: Une revue. Cybium 31, 139–153 (2007).

    Google Scholar 

  • 12.

    Lowe-McConnell, R. H. Ecological Studies in Tropical Fish Communities (Cambridge University Press, 1987).

    Book 

    Google Scholar 

  • 13.

    Bloom, D. D. & Lovejoy, N. R. On the origins of marine derived fishes in South America. J. Biogeogr. 44, 1927–1938 (2017).

    Article 

    Google Scholar 

  • 14.

    de Santana, C. D. et al. Unexpected species diversity in electric eels with a description of the strongest living bioelectricity generator. Nat. Commun. 10, 4000 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Carvalho, L. N., Zuanon, J. & Sazima, I. Natural history of Amazon fishes. In Tropical Biology and Natural Resources Theme (ed. Del-Claro, K.), K. Del-Claro & R. J. Marquis (Session Eds. the Natural History Session), Encyclopedia of Life Support Systems (EOLSS) (Eolss Publishers, 2007).

  • 16.

    Cardoso, Y. P. et al. A continental-wide molecular approach unraveling mtDNA diversity and geographic distribution of the Neotropical genus Hoplias. PLoS ONE 13, e0202024 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Hebert, P. D. N., Cywinska, A., Ball, S. L. & de Waard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 313–321 (2003).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Baldwin, C. C., Castillo, C. I., Weigt, L. A. & Victor, B. C. Seven new species within western Atlantic Starksia atlantica, S. lepicoelia, and S. sluiteri (Teleostei, Labrisomidae), with comments on congruence of DNA barcodes and species. ZooKeys 79, 21–27 (2011).

    Article 

    Google Scholar 

  • 19.

    Robertson, D. R. et al. Deep-water bony fishes collected by the B/O Miguel Oliver on the shelf edge of Pacific Central America: An annotated, illustrated and DNA-barcoded checklist. Zootaxa 4348, 1–125 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Weigt, L. A. et al. Using DNA barcoding to assess Caribbean reef fish biodiversity: Expanding taxonomic and geographic coverage. PLoS ONE 7, e41059 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Seberg, O. et al. Global genome biodiversity network: Saving a blueprint of the tree of life—a botanical perspective. Ann. Bot. 118, 393–399 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Parenti, L. R. et al. Fishes collected during the 2017 MarineGEO assessment of Kāne‘ohe Bay, O‘ahu, Hawai‘i. J. Mar. Biol. Assoc. UK 100, 607–637 (2020).

    Article 

    Google Scholar 

  • 23.

    Droege, G. et al. The Global Genome Biodiversity Network (GGBN) Data Standard specification. Database https://doi.org/10.1093/database/baw125 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Marques, V. et al. Blind assessment of vertebrate taxonomic diversity across spatial scales by clustering environmental DNA metabarcoding sequences. Ecography 43, 1779–1790 (2020).

    Article 

    Google Scholar 

  • 25.

    Leray, M., Knowlton, N., Shien-Lei, H., Nguyen, B. N. & Machida, R. J. GenBank is a reliable resource for 21st biodiversity research. Proc. Natl. Acad. Sci. U.S.A. 116, 22651–22656 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Dillman, C. B. et al. Forensic investigations into a GenBank anomaly: Endangered taxa and the importance of voucher specimens in molecular studies. J. Appl. Ichthyol. 30, 1300–1309 (2014).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Locatelli, N. S., McIntyre, P. B., Therkildsen, N. O. & Baetscher, D. S. GenBank’s reliability is uncertain for biodiversity researchers seeking species-level assignment for eDNA. Proc. Natl. Acad. Sci. U.S.A. 117, 32211–32212 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Jerde, C. L., Wilson, E. A. & Dressler, T. L. Measuring global fish species richness with eDNA metabarcoding. Mol. Ecol. Resour. 19, 19–22 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Nobile, A. B. et al. DNA metabarcoding of Neotropical ichthyoplankton: Enabling high accuracy with lower cost. Metabarcoding Metagenom. 3, 35060 (2019).

    Article 

    Google Scholar 

  • 30.

    Cilleros, K. et al. Unlocking biodiversity and conservation studies in high diversity environments using environmental DNA (eDNA): A text with Guianese freshwater fishes. Mol. Ecol. Resour. 19, 27–46 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Sales, N. G., Wangensteen, O. S., Carvalho, D. C. & Mariani, S. Influence of preservation methods, sample medium and sampling time on eDNA recovery in a neotropical river. Environ. DNA 1, 119–130 (2019).

    Article 

    Google Scholar 

  • 32.

    Jackman, J. M. C. et al. eDNA in a bottleneck: Obstacles to fish metabarcoding studies in megadiverse freshwater systems. Environ. DNA https://doi.org/10.1002/edna3.191 (2021).

    Article 

    Google Scholar 

  • 33.

    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929–942 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    McElroy, M. E. et al. Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness. Front. Ecol. Evol. 8, 276 (2020).

    Article 

    Google Scholar 

  • 35.

    Dudgeon, D. Freshwater Biodiversity: Status (Cambridge University Press, 2020).

    Book 

    Google Scholar 

  • 36.

    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).

    Article 

    Google Scholar 

  • 37.

    Milan, D. T., Mendes, I. S. & Carvalho, D. C. New 12S metabarcoding primers for enhanced Neotropical freshwater fish biodiversity assessment. Sci. Rep. 10, 17966 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Deagle, B. E., Jarman, S. N., Coissac, E., Pompanon, F. & Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biol. Lett. 10, 20140562 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Collins, R. A. et al. Non-specific amplification compromises environmental DNA metabarcoding with COI. Methods Ecol. Evol. 10, 1985–2001 (2019).

    Article 

    Google Scholar 

  • 40.

    Antich, A. et al. To denoise or to cluster, that is not the question: optimizing pipelines for COI metabarcoding and metaphylogeography. BMC Bioinf. 22, 177 (2021).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Vieira, T. B. et al. A multiple hypothesis approach to explain species richness patterns in neotropical stream-dweller fish communities. PLoS ONE 13, e0204114 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Zuanon, J., Bockmann, F. A. & Sazima, I. A remarkable sand-dwelling fish assemblage from central Amazonia, with comments on the evolution of psammophily in South American freshwater fishes. Neotrop. Ichthyol. 4, 107–118 (2006).

    Article 

    Google Scholar 

  • 43.

    Sazima, I., Carvalho, L. N., Mendonça, F. P. & Zuanon, J. Fallen leaves on the water-bed: Diurnal camouflage of three night-active fish species in an Amazonian streamlet. Neotrop. Ichthyol. 4, 119–122 (2006).

    Article 

    Google Scholar 

  • 44.

    Espírito-Santo, H. M. V. & Zuanon, J. Temporary pools provide stability to fish assemblages in Amazon headwater streams. Ecol. Freshw. Fish 26, 475–483 (2017).

    Article 

    Google Scholar 

  • 45.

    de Pinna, M. C. C., Zuanon, J., Rapp-Py-Daniel, L. R. & Petry, P. A new family of neotropical freshwater fishes from deep fossorial Amazonian habitat, with a reappraisal of morphological characiform phylogeny (Teleostei: Ostariophysi). Zool. J. Linn. Soc. 182, 76–106 (2018).

    Article 

    Google Scholar 

  • 46.

    López-Rojas, H., Lundberg, J. G. & Marsh, E. Design and operation of a small trawling apparatus for use with dugout canoes. N. Am. J. Fish. Manag. 4, 331–334 (1984).

    Article 

    Google Scholar 

  • 47.

    Marrero, C. & Taphorn, D. C. Notas sobre la historia natural y la distribution de los peces Gymnotiformes in la cuenca del Rio Apure y otros rios de la Orinoquia. Biollania 8, 123–142 (1991).

    Google Scholar 

  • 48.

    Cox-Fernandes, C., Podos, J. & Lundberg, J. G. Amazonian ecology: Tributaries enhance the diversity of electric fishes. Science 305, 1960–1962 (2004).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Peixoto, L. A. W., Dutra, G. M. & Wosiack, W. B. The electric. Glassknife fishes of the Eigenmannia trilineata group (Gymnotiformes: Sternopygidae): Monophyly and description of seven new species. Zool. J. Linn. Soc. 175, 384–414 (2015).

    Article 

    Google Scholar 

  • 50.

    de Santana, C. D. & Vari, R. P. Electric fishes of the genus Sternarchorhynchus (Teleostei, Ostariophysi, Gymnotiformes); phylogenetic and revisionary studies. Zool. J. Linn. Soc. 159, 223–371 (2010).

    Article 

    Google Scholar 

  • 51.

    Castro, R. M. C. Evolução da ictiofauna de riachos sul-americanos: Padrões gerais e possíveis processos causais. In Ecologia de peixes de riachos (eds Caramaschi, E. P., Mazzoni, R., & Peres-Neto, P. R.) Série Oecologia Brasiliensis volume VI, PPGE-UFRJ, Rio de Janeiro, 139–155 (1999).

  • 52.

    Mojica, J. I., Castellanos, C. & Lobón-Cerviá, J. High temporal species turnover enhances the complexity of fish assemblages in Amazonian Terra firme streams. Ecol. Freshw. Fish 18, 518–526 (2009).

    Article 

    Google Scholar 

  • 53.

    de Oliveira, R. R., Rocha, M. M., Anjos, M. B., Zuanon, J. & Rapp Py-Daniel, L. H. Fish fauna of small streams of the Catua-Ipixuna Extractive Reserve, State of Amazonas, Brazil. Check List 5, 154–172 (2009).

    Article 

    Google Scholar 

  • 54.

    Caramaschi E., Mazzoni, P. R., Bizerril, C. R. S. F. & Peres-Neto, P. R. Ecologia de Peixes de Riachos: Estado Atual e Perspectivas. Oecologia Brasiliensis, v. VI, Rio de Janeiro (1999).

  • 55.

    Anjos, M. B. & Zuanon, J. Sampling effort and fish species richness in small Terra firme forest streams of central Amazonia, Brazil. Neotrop. Ichthyol. 5, 45–52 (2007).

    Article 

    Google Scholar 

  • 56.

    Mojica, J. I., Lobón-Cerviá, J. & Castellanos, C. Quantifying fish species richness and abundance in Amazonian streams: Assessment of a multiple gear method suitable for Terra firme stream fish assemblages. Fish. Manag. Ecol. 21, 220–233 (2014).

    Article 

    Google Scholar 

  • 57.

    Barros, D. F. et al. The fish fauna of streams in the Madeira-Purus interfluvial region, Brazilian Amazon. Check List 7, 768–773 (2011).

    Article 

    Google Scholar 

  • 58.

    Escobar-Camacho, D., Barriga, R. & Ron, S. R. Discovering hidden diversity of characins (Teleostei: Characiformes) in Ecuador’s Yasuní National Park. PLoS ONE 10, e0135569 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 59.

    Ramirez, J. L. et al. Revealing hidden diversity of the underestimated neotropical ichthyofauna: DNA barcoding in the recently described genus Megaleporinus (Characiformes: Anostomidae). Front. Genet. 8, 149 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 60.

    Crampton, W. G. R., de Santana, C. D., Waddell, J. C. & Lovejoy, N. R. The Neotropical electric fish genus Brachyhypopomus (Ostariophysi: Gymnotiformes: Hypopomidae): taxonomy and biology, with descriptions of 15 new species. Neotrop. Ichthyol. 14, 639–790 (2016).

    Article 

    Google Scholar 

  • 61.

    Abel, R. Conservation biology for the biodiversity crisis: A freshwater follow-up. Conserv. Biol. 5, 1435–1437 (2002).

    Article 

    Google Scholar 

  • 62.

    Dudgeon, D. Prospects for sustaining freshwater biodiversity in the 21st century: Linking ecosystem structure and function. Curr. Opin. Environ. Sustain. 5, 422–430 (2010).

    Article 

    Google Scholar 

  • 63.

    Jenkins, M. Prospects for biodiversity. Science 302, 1175–1177 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Bunn, S. E. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 65.

    Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Gilbert, M. T. P. et al. The isolation of nucleic acids from fixed, paraffin-embedded tissues–which methods are useful when?. PLoS ONE 2, e537 (2007).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 67.

    Campos, P. F. & Gilbert, T. M. DNA extraction from formalin-fixed material. In Ancient DNA 81–85 (Humana Press, 2012).

  • 68.

    Hykin, S. M., Bi, K. & McGuire, J. A. Fixing formalin: A method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing. PLoS ONE 10, e0141579 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 69.

    Hagedorn, M. M. et al. Cryopreservation of fish spermatogonial cells: The future of natural history collections. Sci. Rep. 8, 6149 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 70.

    Albert, J. & Reis, R. E. Historical Biogeography of Neotropical Freshwater Fishes (University of California Press, 2011).

    Book 

    Google Scholar 

  • 71.

    Sabaj Pérez, M. H. Where the Xingu bends and will soon break. Am. Sci. 103, 395–403 (2015).

    Article 

    Google Scholar 

  • 72.

    Amigo, I. When will the Amazon hit a tipping point?. Nature 578, 505–507 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Murienne, J. et al. Aquatic DNA for monitoring French Guiana biodiversity. Biodivers. Data J. 7, 37518 (2019).

    Article 

    Google Scholar 

  • 74.

    McDevitt, A. D. et al. Environmental DNA metabarcoding as an effective and rapid tool for fish monitoring in canals. J. Fish Biol. 95, 679–682 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Fernandes, G. W. et al. Dismantling Brazil’s science threatens global biodiversity heritage. Perspect. Ecol. Conserv. 15, 239–243 (2017).

    Google Scholar 

  • 76.

    Alves, R. J. V. et al. Brazilian legislation on genetic heritage harms Biodiversity Convention goals and threatens basic biology research and education. An. Acad. Bras. Ciênc. 90, 1279–1284 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 77.

    Overbeck, G. E. et al. Global biodiversity threatened by science budget cuts in Brazil. Bioscience 68, 11–12 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 78.

    Miya, M. et al. Use of a filter cartridge for filtration of water samples and extraction of environmental DNA. J. Vis. Exp. 117, 54741 (2016).

    Google Scholar 

  • 79.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 85.

    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article 

    Google Scholar 

  • 86.

    Miller, M. A. et al. A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evol. Bioinf. 11, 43–48 (2015).

    CAS 
    Article 

    Google Scholar 

  • 87.

    Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 88.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.Rproject.org/.

  • 89.

    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 
    Book 

    Google Scholar 

  • 90.

    Oksanen, J., Kindt, R. & O’Hara, B. Package VEGAN. Community Ecology Package, Version 2 (2013).

  • 91.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).

    Google Scholar 

  • 92.

    Adler D., Nenadic, O. & Zucchini, W. rgl: 3D visualization device system (OpenGL). R package version 0.93.945. http://CRAN.R-project.org/package=rgl (2013).

  • 93.

    Gu, Z. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    Schiettekatte, N. M. D., Brandl, S. J. & Casey, J. M. Fishualize: Color Palettes Based On Fish Species. CRAN version 0.2.0 (2019).

  • 95.

    Chao, A. Estimating population size for sparse data in capture-recapture experiments. Biometrics 45, 427 (1989).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 96.

    Hsieh T. C., Ma, K. H. & Chao, A. iNEXT: Interpolation and Extrapolation for Species Diversity. R package version 2.0.20 (2020).

  • 97.

    Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecol. Lett. 8, 148–215 (2005).

    Article 

    Google Scholar 

  • 98.

    Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 99.

    Chao A., Ma, K. H., Hsieh, T. C. & Chiu, C. H. SpadeR (Species-richness Prediction and Diversity Estimation in R): An R package in CRAN. Program and User’s Guide also published at http://chao.stat.nthu.edu.tw/wordpress/software_download/ (2016).


  • Source: Ecology - nature.com

    Non-diphtheriae Corynebacterium species are associated with decreased risk of pneumococcal colonization during infancy

    Researchers design sensors to rapidly detect plant hormones