in

The dynamics of evolutionary rescue from a novel pathogen threat in a host metapopulation

  • 1.

    Maslo, B. & Fefferman, N. H. A case study of bats and white-nose syndrome demonstrating how to model population viability with evolutionary effects. Conserv. Biol. 29, 1176–1185 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Morris, W. F. & Doak, D. F. Quantitative Conservation Biology (Sinauer, Sunderland, 2002).

    Google Scholar 

  • 3.

    Liebhold, A. & Bascompte, J. The Allee effect, stochastic dynamics and the eradication of alien species. Ecol. Lett. 6, 133–140 (2003).

    Article 

    Google Scholar 

  • 4.

    Stephens, P. A. & Sutherland, W. J. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 14, 401–405 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Nunney, L. & Elam, D. R. Estimating the effective population size of conserved populations. Conserv. Biol. 8, 175–184 (1994).

    Article 

    Google Scholar 

  • 6.

    Lande, R. & Barrowclough, G. Effective population size, genetic variation, and their use in population. Viable populations for conservation, 87 (1987).

  • 7.

    Frankham, R. Effective population size/adult population size ratios in wildlife: A review. Genet. Res. 66, 95–107 (1995).

    Article 

    Google Scholar 

  • 8.

    Tallmon, D. A., Luikart, G. & Waples, R. S. The alluring simplicity and complex reality of genetic rescue. Trends Ecol. Evol. 19, 489–496 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Jiao, J., Gilchrist, M. A. & Fefferman, N. H. The impact of host metapopulation structure on short-term evolutionary rescue in the face of a novel pathogenic threat. Glob. Ecol. Conserv. 23, 01174 (2020).

    Google Scholar 

  • 11.

    Hanski, I. Metapopulation Ecology (Oxford University Press, Oxford, 1999).

    Google Scholar 

  • 12.

    Mortier, F., Jacob, S., Vandegehuchte, M. L. & Bonte, D. Habitat choice stabilizes metapopulation dynamics by enabling ecological specialization. Oikos 128, 529–539 (2019).

    Article 

    Google Scholar 

  • 13.

    Jiao, J., Riotte-Lambert, L., Pilyugin, S. S., Gil, M. A. & Osenberg, C. W. Mobility and its sensitivity to fitness differences determine consumer–resource distributions. R. Soc. Open Sci. 7, 200247 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Anderson, S. C., Moore, J. W., McClure, M. M., Dulvy, N. K. & Cooper, A. B. Portfolio conservation of metapopulations under climate change. Ecol. Appl. 25, 559–572 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Case, T. J. Invasion resistance, species build-up and community collapse in metapopulation models with interspecies competition. Biol. J. Lin. Soc. 42, 239–266 (1991).

    Article 

    Google Scholar 

  • 16.

    Gyllenberg, M. & Hanski, I. Habitat deterioration, habitat destruction, and metapopulation persistence in a heterogenous landscape. Theor. Popul. Biol. 52, 198–215 (1997).

    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Jiao, J., Pilyugin, S. S. & Osenberg, C. W. Random movement of predators can eliminate trophic cascades in marine protected areas. Ecosphere 7, e01421 (2016).

    Article 

    Google Scholar 

  • 18.

    Nee, S. & May, R. M. Dynamics of metapopulations: Habitat destruction and competitive coexistence. J. Anim. Ecol. 61, 37–40 (1992).

    Article 

    Google Scholar 

  • 19.

    Ying, Y., Chen, Y., Lin, L. & Gao, T. Risks of ignoring fish population spatial structure in fisheries management. Can. J. Fish. Aquat. Sci. 68, 2101–2120 (2011).

    Article 

    Google Scholar 

  • 20.

    Hess, G. Disease in metapopulation models: Implications for conservation. Ecology 77, 1617–1632 (1996).

    Article 

    Google Scholar 

  • 21.

    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife: Threats to biodiversity and human health. Science 287, 443–449 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Harding, K. C., Begon, M., Eriksson, A. & Wennberg, B. Increased migration in host–pathogen metapopulations can cause host extinction. J. Theor. Biol. 298, 1–7 (2012).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Dowling, A. J., Hill, G. E. & Bonneaud, C. Multiple differences in pathogen-host cell interactions following a bacterial host shift. Sci. Rep. 10, 1–12 (2020).

    Article 
    CAS 

    Google Scholar 

  • 24.

    Kuzmin, I. V. et al. Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001–2009. PLoS Pathog 8, e1002786 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Levine, R. S. et al. Supersuppression: Reservoir competency and timing of mosquito host shifts combine to reduce spillover of West Nile virus. Am. J. Trop. Med. Hyg. 95, 1174–1184 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Langwig, K. E. et al. Context-dependent conservation responses to emerging wildlife diseases. Front. Ecol. Environ. 13, 195–202 (2015).

    Article 

    Google Scholar 

  • 27.

    Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. 12, 1–12 (2009).

    Article 

    Google Scholar 

  • 28.

    Xiao, Y., Tang, B., Wu, J., Cheke, R. A. & Tang, S. Linking key intervention timing to rapid decline of the COVID-19 effective reproductive number to quantify lessons from mainland China. Int. J. Infect. Dis. 97, 296–298 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Cintrón-Arias, A., Castillo-Chávez, C., Betencourt, L., Lloyd, A. L. & Banks, H. T. The Estimation of the Effective Reproductive Number from Disease Outbreak Data. (North Carolina State University, Center for Research in Scientific Computation, 2008).

  • 30.

    Salpeter, E. E. & Salpeter, S. R. Mathematical model for the epidemiology of tuberculosis, with estimates of the reproductive number and infection-delay function. Am. J. Epidemiol. 147, 398–406 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Grenfell, B. & Harwood, J. (Meta) population dynamics of infectious diseases. Trends Ecol. Evol. 12, 395–399 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Millard, A. R., Roberts, C. A. & Hughes, S. S. Isotopic evidence for migration in Medieval England: The potential for tracking the introduction of disease. Soc. Biol. Human Affairs. 70, 9–13 (2005).

    Google Scholar 

  • 33.

    Chen, M. et al. The introduction of population migration to SEIAR for COVID-19 epidemic modeling with an efficient intervention strategy. Inf. Fusion 64, 252–258 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Reed, K. D., Meece, J. K., Henkel, J. S. & Shukla, S. K. Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens. Clin. Med. Res. 1, 5–12 (2003).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Roy, B. & Kirchner, J. Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54, 51–63 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Bliven, K. A. & Maurelli, A. T. Antivirulence genes: Insights into pathogen evolution through gene loss. Infect. Immun. 80, 4061–4070 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Wild, G., Gardner, A. & West, S. A. Adaptation and the evolution of parasite virulence in a connected world. Nature 459, 983–986 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Laine, A. L. Resistance variation within and among host populations in a plant–pathogen metapopulation: Implications for regional pathogen dynamics. J. Ecol. 92, 990–1000 (2004).

    Article 

    Google Scholar 

  • 39.

    Thrall, P. H. et al. Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecol. Lett. 15, 425–435 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Juhas, M. Horizontal gene transfer in human pathogens. Crit. Rev. Microbiol. 41, 101–108 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Soanes, D. & Richards, T. A. Horizontal gene transfer in eukaryotic plant pathogens. Annu. Rev. Phytopathol. 52, 583–614 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Brunham, R. C., Plummer, F. A. & Stephens, R. S. Bacterial antigenic variation, host immune response, and pathogen-host coevolution. Infect. Immun. 61, 2273 (1993).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Sasaki, A. Evolution of antigen drift/switching: Continuously evading pathogens. J. Theor. Biol. 168, 291–308 (1994).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Lange, A. & Ferguson, N. M. Antigenic diversity, transmission mechanisms, and the evolution of pathogens. PLoS Comput. Biol. 5, 1000536 (2009).

    ADS 
    MathSciNet 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: History, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Messenger, S. L., Molineux, I. J. & Bull, J. Virulence evolution in a virus obeys a trade off. Proc. R. Soc. Lond. B 266, 397–404 (1999).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Bull, J. J. & Lauring, A. S. Theory and empiricism in virulence evolution. PLoS Pathog 10, e1004387 (2014).

  • 49.

    Gray, M. J. & Chinchar, V. G. Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates (Springer Science+ Business Media, New York, 2015).

    Book 

    Google Scholar 

  • 50.

    Dobbelaere, T., Muller, E. M., Gramer, L. J., Holstein, D. M. & Hanert, E. Coupled epidemio-hydrodynamic modeling to understand the spread of a deadly coral disease in Florida. Front. Mar. Sci. 7, 1016 (2020).

    Article 

    Google Scholar 

  • 51.

    Stoddard, S. T. et al. House-to-house human movement drives dengue virus transmission. Proc. Natl. Acad. Sci. USA 110, 994–999 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Diekmann, O., Heesterbeek, J. & Roberts, M. G. The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7, 873–885 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Smith, K. F., Sax, D. F. & Lafferty, K. D. Evidence for the role of infectious disease in species extinction and endangerment. Conserv. Biol. 20, 1349–1357 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Anderson, R. M., Anderson, B. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, Oxford, 1992).

    Google Scholar 

  • 55.

    O’Brien, S. J. et al. Genetic basis for species vulnerability in the cheetah. Science 227, 1428–1434 (1985).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Ingvarsson, P. K. & Lundberg, S. The effect of a vector-borne disease on the dynamics of natural plant populations: A model for Ustilago violacea infection of Lychnis viscaria. J. Ecol. 81, 263–270 (1993).

    Article 

    Google Scholar 

  • 57.

    Carlson, S. M., Cunningham, C. J. & Westley, P. A. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Gonzalez, A., Ronce, O., Ferriere, R. & Hochberg, M. E. (The Royal Society, 2013).

  • 59.

    Fine, P. E. Herd immunity: History, theory, practice. Epidemiol. Rev. 15, 265–302 (1993).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Fontanet, A. & Cauchemez, S. COVID-19 herd immunity: Where are we?. Nat. Rev. Immunol. 20, 583–584 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 61.

    Fine, P., Eames, K. & Heymann, D. L. “Herd immunity”: A rough guide. Clin. Infect. Dis. 52, 911–916 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Barbarossa, M. V. & Röst, G. Immuno-epidemiology of a population structured by immune status: A mathematical study of waning immunity and immune system boosting. J. Math. Biol. 71, 1737–1770 (2015).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Hamami, D., Cameron, R., Pollock, K. G. & Shankland, C. Waning immunity is associated with periodic large outbreaks of mumps: A mathematical modeling study of Scottish data. Front. Physiol. 8, 233 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Klepac, P. & Caswell, H. The stage-structured epidemic: Linking disease and demography with a multi-state matrix approach model. Thyroid Res. 4, 301–319 (2011).

    Google Scholar 

  • 65.

    Anderson, R. M. & May, R. M. Population biology of infectious diseases: Part I. Nature 280, 361–367 (1979).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations. J. Theor. Biol. 251, 450–467 (2008).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Stone, C. M., Schwab, S. R., Fonseca, D. M. & Fefferman, N. H. Human movement, cooperation and the effectiveness of coordinated vector control strategies. J. R. Soc. Interface 14, 20170336 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Jiao, J., Pilyugin, S. S., Riotte-Lambert, L. & Osenberg, C. W. Habitat-dependent movement rate can determine the efficacy of marine protected areas. Ecology 99, 2485–2495 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Keeling, M. J., Rohani, P. & Grenfell, B. T. Seasonally forced disease dynamics explored as switching between attractors. Physica D 148, 317–335 (2001).

    ADS 
    MATH 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A graduate student who goes to extremes

    MIT students and alumni “hack” Hong Kong Kowloon East