Maslo, B. & Fefferman, N. H. A case study of bats and white-nose syndrome demonstrating how to model population viability with evolutionary effects. Conserv. Biol. 29, 1176–1185 (2015).
Google Scholar
Morris, W. F. & Doak, D. F. Quantitative Conservation Biology (Sinauer, Sunderland, 2002).
Liebhold, A. & Bascompte, J. The Allee effect, stochastic dynamics and the eradication of alien species. Ecol. Lett. 6, 133–140 (2003).
Google Scholar
Stephens, P. A. & Sutherland, W. J. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 14, 401–405 (1999).
Google Scholar
Nunney, L. & Elam, D. R. Estimating the effective population size of conserved populations. Conserv. Biol. 8, 175–184 (1994).
Google Scholar
Lande, R. & Barrowclough, G. Effective population size, genetic variation, and their use in population. Viable populations for conservation, 87 (1987).
Frankham, R. Effective population size/adult population size ratios in wildlife: A review. Genet. Res. 66, 95–107 (1995).
Google Scholar
Tallmon, D. A., Luikart, G. & Waples, R. S. The alluring simplicity and complex reality of genetic rescue. Trends Ecol. Evol. 19, 489–496 (2004).
Google Scholar
Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).
Google Scholar
Jiao, J., Gilchrist, M. A. & Fefferman, N. H. The impact of host metapopulation structure on short-term evolutionary rescue in the face of a novel pathogenic threat. Glob. Ecol. Conserv. 23, 01174 (2020).
Hanski, I. Metapopulation Ecology (Oxford University Press, Oxford, 1999).
Mortier, F., Jacob, S., Vandegehuchte, M. L. & Bonte, D. Habitat choice stabilizes metapopulation dynamics by enabling ecological specialization. Oikos 128, 529–539 (2019).
Google Scholar
Jiao, J., Riotte-Lambert, L., Pilyugin, S. S., Gil, M. A. & Osenberg, C. W. Mobility and its sensitivity to fitness differences determine consumer–resource distributions. R. Soc. Open Sci. 7, 200247 (2020).
Google Scholar
Anderson, S. C., Moore, J. W., McClure, M. M., Dulvy, N. K. & Cooper, A. B. Portfolio conservation of metapopulations under climate change. Ecol. Appl. 25, 559–572 (2015).
Google Scholar
Case, T. J. Invasion resistance, species build-up and community collapse in metapopulation models with interspecies competition. Biol. J. Lin. Soc. 42, 239–266 (1991).
Google Scholar
Gyllenberg, M. & Hanski, I. Habitat deterioration, habitat destruction, and metapopulation persistence in a heterogenous landscape. Theor. Popul. Biol. 52, 198–215 (1997).
Google Scholar
Jiao, J., Pilyugin, S. S. & Osenberg, C. W. Random movement of predators can eliminate trophic cascades in marine protected areas. Ecosphere 7, e01421 (2016).
Google Scholar
Nee, S. & May, R. M. Dynamics of metapopulations: Habitat destruction and competitive coexistence. J. Anim. Ecol. 61, 37–40 (1992).
Google Scholar
Ying, Y., Chen, Y., Lin, L. & Gao, T. Risks of ignoring fish population spatial structure in fisheries management. Can. J. Fish. Aquat. Sci. 68, 2101–2120 (2011).
Google Scholar
Hess, G. Disease in metapopulation models: Implications for conservation. Ecology 77, 1617–1632 (1996).
Google Scholar
Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife: Threats to biodiversity and human health. Science 287, 443–449 (2000).
Google Scholar
Harding, K. C., Begon, M., Eriksson, A. & Wennberg, B. Increased migration in host–pathogen metapopulations can cause host extinction. J. Theor. Biol. 298, 1–7 (2012).
Google Scholar
Dowling, A. J., Hill, G. E. & Bonneaud, C. Multiple differences in pathogen-host cell interactions following a bacterial host shift. Sci. Rep. 10, 1–12 (2020).
Google Scholar
Kuzmin, I. V. et al. Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001–2009. PLoS Pathog 8, e1002786 (2012).
Google Scholar
Levine, R. S. et al. Supersuppression: Reservoir competency and timing of mosquito host shifts combine to reduce spillover of West Nile virus. Am. J. Trop. Med. Hyg. 95, 1174–1184 (2016).
Google Scholar
Langwig, K. E. et al. Context-dependent conservation responses to emerging wildlife diseases. Front. Ecol. Environ. 13, 195–202 (2015).
Google Scholar
Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. 12, 1–12 (2009).
Google Scholar
Xiao, Y., Tang, B., Wu, J., Cheke, R. A. & Tang, S. Linking key intervention timing to rapid decline of the COVID-19 effective reproductive number to quantify lessons from mainland China. Int. J. Infect. Dis. 97, 296–298 (2020).
Google Scholar
Cintrón-Arias, A., Castillo-Chávez, C., Betencourt, L., Lloyd, A. L. & Banks, H. T. The Estimation of the Effective Reproductive Number from Disease Outbreak Data. (North Carolina State University, Center for Research in Scientific Computation, 2008).
Salpeter, E. E. & Salpeter, S. R. Mathematical model for the epidemiology of tuberculosis, with estimates of the reproductive number and infection-delay function. Am. J. Epidemiol. 147, 398–406 (1998).
Google Scholar
Grenfell, B. & Harwood, J. (Meta) population dynamics of infectious diseases. Trends Ecol. Evol. 12, 395–399 (1997).
Google Scholar
Millard, A. R., Roberts, C. A. & Hughes, S. S. Isotopic evidence for migration in Medieval England: The potential for tracking the introduction of disease. Soc. Biol. Human Affairs. 70, 9–13 (2005).
Chen, M. et al. The introduction of population migration to SEIAR for COVID-19 epidemic modeling with an efficient intervention strategy. Inf. Fusion 64, 252–258 (2020).
Google Scholar
Reed, K. D., Meece, J. K., Henkel, J. S. & Shukla, S. K. Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens. Clin. Med. Res. 1, 5–12 (2003).
Google Scholar
Roy, B. & Kirchner, J. Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54, 51–63 (2000).
Google Scholar
Bliven, K. A. & Maurelli, A. T. Antivirulence genes: Insights into pathogen evolution through gene loss. Infect. Immun. 80, 4061–4070 (2012).
Google Scholar
Wild, G., Gardner, A. & West, S. A. Adaptation and the evolution of parasite virulence in a connected world. Nature 459, 983–986 (2009).
Google Scholar
Laine, A. L. Resistance variation within and among host populations in a plant–pathogen metapopulation: Implications for regional pathogen dynamics. J. Ecol. 92, 990–1000 (2004).
Google Scholar
Thrall, P. H. et al. Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecol. Lett. 15, 425–435 (2012).
Google Scholar
Juhas, M. Horizontal gene transfer in human pathogens. Crit. Rev. Microbiol. 41, 101–108 (2015).
Google Scholar
Soanes, D. & Richards, T. A. Horizontal gene transfer in eukaryotic plant pathogens. Annu. Rev. Phytopathol. 52, 583–614 (2014).
Google Scholar
Brunham, R. C., Plummer, F. A. & Stephens, R. S. Bacterial antigenic variation, host immune response, and pathogen-host coevolution. Infect. Immun. 61, 2273 (1993).
Google Scholar
Sasaki, A. Evolution of antigen drift/switching: Continuously evading pathogens. J. Theor. Biol. 168, 291–308 (1994).
Google Scholar
Lange, A. & Ferguson, N. M. Antigenic diversity, transmission mechanisms, and the evolution of pathogens. PLoS Comput. Biol. 5, 1000536 (2009).
Google Scholar
Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: History, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009).
Google Scholar
Messenger, S. L., Molineux, I. J. & Bull, J. Virulence evolution in a virus obeys a trade off. Proc. R. Soc. Lond. B 266, 397–404 (1999).
Google Scholar
Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).
Google Scholar
Bull, J. J. & Lauring, A. S. Theory and empiricism in virulence evolution. PLoS Pathog 10, e1004387 (2014).
Gray, M. J. & Chinchar, V. G. Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates (Springer Science+ Business Media, New York, 2015).
Google Scholar
Dobbelaere, T., Muller, E. M., Gramer, L. J., Holstein, D. M. & Hanert, E. Coupled epidemio-hydrodynamic modeling to understand the spread of a deadly coral disease in Florida. Front. Mar. Sci. 7, 1016 (2020).
Google Scholar
Stoddard, S. T. et al. House-to-house human movement drives dengue virus transmission. Proc. Natl. Acad. Sci. USA 110, 994–999 (2013).
Google Scholar
Diekmann, O., Heesterbeek, J. & Roberts, M. G. The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7, 873–885 (2010).
Google Scholar
Smith, K. F., Sax, D. F. & Lafferty, K. D. Evidence for the role of infectious disease in species extinction and endangerment. Conserv. Biol. 20, 1349–1357 (2006).
Google Scholar
Anderson, R. M., Anderson, B. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, Oxford, 1992).
O’Brien, S. J. et al. Genetic basis for species vulnerability in the cheetah. Science 227, 1428–1434 (1985).
Google Scholar
Ingvarsson, P. K. & Lundberg, S. The effect of a vector-borne disease on the dynamics of natural plant populations: A model for Ustilago violacea infection of Lychnis viscaria. J. Ecol. 81, 263–270 (1993).
Google Scholar
Carlson, S. M., Cunningham, C. J. & Westley, P. A. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).
Google Scholar
Gonzalez, A., Ronce, O., Ferriere, R. & Hochberg, M. E. (The Royal Society, 2013).
Fine, P. E. Herd immunity: History, theory, practice. Epidemiol. Rev. 15, 265–302 (1993).
Google Scholar
Fontanet, A. & Cauchemez, S. COVID-19 herd immunity: Where are we?. Nat. Rev. Immunol. 20, 583–584 (2020).
Google Scholar
Fine, P., Eames, K. & Heymann, D. L. “Herd immunity”: A rough guide. Clin. Infect. Dis. 52, 911–916 (2011).
Google Scholar
Barbarossa, M. V. & Röst, G. Immuno-epidemiology of a population structured by immune status: A mathematical study of waning immunity and immune system boosting. J. Math. Biol. 71, 1737–1770 (2015).
Google Scholar
Hamami, D., Cameron, R., Pollock, K. G. & Shankland, C. Waning immunity is associated with periodic large outbreaks of mumps: A mathematical modeling study of Scottish data. Front. Physiol. 8, 233 (2017).
Google Scholar
Klepac, P. & Caswell, H. The stage-structured epidemic: Linking disease and demography with a multi-state matrix approach model. Thyroid Res. 4, 301–319 (2011).
Anderson, R. M. & May, R. M. Population biology of infectious diseases: Part I. Nature 280, 361–367 (1979).
Google Scholar
Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations. J. Theor. Biol. 251, 450–467 (2008).
Google Scholar
Stone, C. M., Schwab, S. R., Fonseca, D. M. & Fefferman, N. H. Human movement, cooperation and the effectiveness of coordinated vector control strategies. J. R. Soc. Interface 14, 20170336 (2017).
Google Scholar
Jiao, J., Pilyugin, S. S., Riotte-Lambert, L. & Osenberg, C. W. Habitat-dependent movement rate can determine the efficacy of marine protected areas. Ecology 99, 2485–2495 (2018).
Google Scholar
Keeling, M. J., Rohani, P. & Grenfell, B. T. Seasonally forced disease dynamics explored as switching between attractors. Physica D 148, 317–335 (2001).
Google Scholar
Source: Ecology - nature.com