in

The ecological importance of habitat complexity to the Caribbean coral reef herbivore Diadema antillarum: three lines of evidence

  • 1.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    de Groot, R. et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 1, 50–61 (2012).

    Article 

    Google Scholar 

  • 3.

    Exton, D. A. et al. Artisanal fish fences pose broad and unexpected threats to the tropical coastal seascape. Nat. Commun. 10, 2100 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science (80-) 301, 955–958 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Jackson, J.B.C., Donovan, M.K., Cramer, K.L. and Lam, V.V. Status and trends of Caribbean coral reefs. Global Coral Reef Monitoring
    Network
    , IUCN, Gland, Switzerland, pp.1970-2012. (2014).

  • 8.

    Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc. R. Soc. B Biol. Sci. 276, 3019–3025 (2009).

    Article 

    Google Scholar 

  • 9.

    Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).

    Article 

    Google Scholar 

  • 10.

    Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Ind. 57, 395–408 (2015).

    Article 

    Google Scholar 

  • 11.

    McCann, K. S. The diversity-stability debate. Nature 405, 228–233 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Solandt, J. L. & Campbell, A. C. Macroalgal feeding characteristics of the sea urchin Diadema antillarum Philippi at Discovery Bay, Jamaica. Caribb. J. Sci. 37, 227–238 (2001).

    Google Scholar 

  • 16.

    Chiappone, M., Rutten, L. M., Miller, S. L. & Swanson, D. W. Recent trends (1999–2011) in population density and size of the echinoid Diadema antillarum in the Florida Keys. Florida Sci. 76, 23–35 (2013).

    Google Scholar 

  • 17.

    Lessios, H. A. The great Diadema antillarum die-off: 30 years later. Annu. Rev. Mar. Sci. 8, 267–283 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. W. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecol. Soc. Am. 90, 1478–1484 (2009).

    Google Scholar 

  • 19

    Miller, M. W., Szmant, A. M. & Precht, W. F. Lessons learned from experimental key-species restoration. In Coral Reef Restoration Handbook, 219–234 (ed. Precht, W. F.) (Taylor & Francis, 2006).

    Google Scholar 

  • 20.

    Mumby, P. J., Hedley, J. D., Zychaluk, K., Harborne, A. R. & Blackwell, P. G. Revisiting the catastrophic die-off of the urchin Diadema antillarum on Caribbean coral reefs: fresh insights on resilience from a simulation model. Ecol. Modell. 196, 131–148 (2006).

    Article 

    Google Scholar 

  • 21.

    Myhre, S. & Acevedo-Gutiérrez, A. Recovery of sea urchin Diadema antillarum populations is correlated to increased coral and reduced macroalgal cover. Mar. Ecol. Prog. Ser. 329, 205–210 (2007).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Carpenter, R. C. Predator and population density control of homing behavior in the Caribbean echinoid Diadema antillarum. Mar. Biol. 82, 101–108 (1984).

    Article 

    Google Scholar 

  • 23.

    Edmunds, P. J. & Carpenter, R. C. Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proc. Natl. Acad. Sci. U. S. A. 98, 5067–5071 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Wanders, J. B. W. The role of benthic algae in the shallow reef of Curaçao (Netherlands Antilles) III: the significance of grazing. Aquat. Bot. 3, 357–390 (1977).

    Article 

    Google Scholar 

  • 25.

    Bak, R. P. M., Carpay, M. J. E. & de Ruyter van Steveninck, E. D. Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curacao. Mar. Ecol. Prog. Ser. 17, 105–108 (1984).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Levitan, D. R. Algal-urchin biomass responses following mass mortality of Diadema antillarum Philippi at Saint John, U.S. Virgin Islands. J. Exp. Mar. Biol. Ecol. 119, 167–178 (1988).

    Article 

    Google Scholar 

  • 27.

    Chiappone, M., Rutten, L., Swanson, D. & Miller, S. Population status of the urchin Diadema antillarum in the Florida Keys 25 years after the Caribbean mass mortality. In Proceedings of 11th International Coral Reef Symposium 706–710 (2008).

  • 28.

    Bodmer, M. D. V., Rogers, A., Speight, M. R., Lubbock, N. & Exton, D. A. Using an isolated population boom to explore barriers to recovery in the keystone Caribbean coral reef herbivore Diadema antillarum. Coral Reefs 34, 1011–1021 (2015).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Lessios, H. A., Robertson, D. R. & Cubit, J. D. Spread of Diadema mass mortality through the Caribbean. Science (80-) 226, 335–337 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Liddell, W. D. & Ohlhorst, S. L. Changes in benthic community composition following the mass mortality of Diadema at Jamaica. J. Exp. Mar. Biol. Ecol. 95, 271–278 (1986).

    Article 

    Google Scholar 

  • 31.

    Betchel, J. D., Gayle, P. & Kaufman, L. The return of Diadema antillarum to Discovery Bay: patterns of distribution and abundance. In Proceedings of 10th International Coral Reef Symposium 367–375 (2006).

  • 32.

    Robertson, D. R. Increases in surgeonfish populations after mass mortality of the sea urchin Diadema antillarum in Panamá indicate food limitation. Mar. Biol. 111, 437–444 (1991).

    Article 

    Google Scholar 

  • 33.

    Lessios, H. A. Diadema antillarum populations in Panama 20 years following mass mortality. Coral Reefs 24, 125–127 (2005).

    Article 

    Google Scholar 

  • 34.

    Hunte, W. & Younglao, D. Recruitment and population recovery of Diadema antillarum (Echinodermata; Echinoidea) in Barbados. Mar. Ecol. Prog. Ser. 45, 109–119 (1988).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Noriega, N., Pauls, S. M. & del Mónaco, C. Abundancia de Diadema antillarum (Echinodermata: Echinoidea) en las costas de Venezuela. Rev. Biol. Trop. 54, 793–802 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Debrot, A. O. & Nagelkerken, I. Recovery of the long-spined sea urchin Diadema antillarum in Curacao (Netherlands Antilles) linked to lagoonal and wave sheltered shallow rocky habitats. Bull. Mar. Sci. 72, 415–424 (2006).

    Google Scholar 

  • 37.

    Vermeij, M. J. A., Debrot, A. O., van der Hal, N., Bakker, J. & Bak, R. P. M. Increased recruitment rates indicate recovering populations of the sea urchin Diadema antillarum on Curaçao. Bull. Mar. Sci. 86, 719–725 (2010).

    Google Scholar 

  • 38.

    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science (80-) 321, 560–563 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science (80-) 301, 958–960 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 40.

    Pennington, J. T. The ecology of fertilization of echinoid eggs: the consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. 169, 417–430 (1985).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Levitan, D. R. Influence of body size and population density on fertilization success and reproductive output in a free-spawning invertebrate. Biol. Bull. 181, 261–268 (1991).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Levitan, D. R., Edmunds, P. J. & Levitan, K. E. What makes a species common? No evidence of density-dependent recruitment or mortality of the sea urchin Diadema antillarum after the 1983–1984 mass mortality. Oecologia 175, 117–128 (2014).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Lacey, E. A., Fourqurean, J. W. & Collado-Vides, L. Increased algal dominance despite presence of Diadema antillarum populations on a Caribbean coral reef. Bull. Mar. Sci. 89, 603–620 (2013).

    Article 

    Google Scholar 

  • 44.

    Dumas, P., Kulbicki, M., Chifflet, S., Fichez, R. & Ferraris, J. Environmental factors influencing urchin spatial distributions on disturbed coral reefs (New Caledonia, South Pacific). J. Exp. Mar. Biol. Ecol. 344, 88–100 (2007).

    Article 

    Google Scholar 

  • 45.

    Rogers, A. & Lorenzen, K. Does slow and variable recovery of Diadema antillarum on Caribbean fore-reefs reflect density-dependent habitat selection? Front. Mar. Sci. 3, 63 (2016).

    Article 

    Google Scholar 

  • 46.

    Alvarado, J. J., Cortés, J., Guzman, H. & Reyes-Bonilla, H. Density, size, and biomass of Diadema mexicanum (Echinoidea) in Eastern Tropical Pacific coral reefs. Aquat. Biol. 24, 151–161 (2016).

    Article 

    Google Scholar 

  • 47.

    Ogden, J. C. & Carpenter, R. C. Long-spined black sea urchin. Biol. Rep. 82, 1–17 (1987).

    Google Scholar 

  • 48.

    Bodmer, M. D. V. et al. Interacting effects of temperature, habitat and phenotype on predator avoidance behaviour in Diadema antillarum: implications for restorative conservation. Mar. Ecol. Prog. Ser. 566, 105–115 (2017).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Andradi-Brown, D. A., Gress, E., Wright, G., Exton, D. A. & Rogers, A. D. Reef fish community biomass and trophic structure changes across shallow to upper-mesophotic reefs in the mesoamerican barrier reef, Caribbean. PLoS ONE 11, 1–19 (2016).

    Google Scholar 

  • 50.

    Rodríguez-Barreras, R., Pérez, M. E., Mercado-Molina, A. E. & Sabat, A. M. Arrested recovery of Diadema antillarum population: survival or recruitment limitation? Estuar. Coast. Shelf Sci. 163, 167–174 (2015).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Risk, M. J. Fish diversity on a coral reef in the Virgin Islands. Atoll Res. Bull. 153, 1–4 (1972).

    Article 

    Google Scholar 

  • 52.

    Figueira, W. et al. Accuracy and precision of habitat structural complexity metrics derived from underwater photogrammetry. Remote Sens. 7, 16883–16900 (2015).

    ADS 
    Article 

    Google Scholar 

  • 53.

    Leon, J. X., Roelfsema, C. M., Saunders, M. I. & Phinn, S. R. Measuring coral reef terrain roughness using ‘Structure-from-Motion’ close-range photogrammetry. Geomorphology 242, 21–28 (2015).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Storlazzi, C. D., Dartnell, P., Hatcher, G. A. & Gibbs, A. E. End of the chain? Rugosity and fine-scale bathymetry from existing underwater digital imagery using structure-from-motion (SfM) technology. Coral Reefs 35, 889–894 (2016).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Young, G. C., Dey, S., Rogers, A. D. & Exton, D. A. Cost and time-effective method for multiscale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3D models. PLoS ONE 12, e0175341 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Zawada, D. G. & Brock, J. C. A multiscale analysis of coral reef topographic complexity using lidar-derived bathymetry. J. Coast. Res. 2009, 6–16 (2009).

    Article 

    Google Scholar 

  • 57.

    Randall, J. E., Schroeder, R. E. & Starck, W. A. Notes on the biology of the echinoid Diadema antillarum. Caribb. J. Sci. 4, 421–433 (1964).

    Google Scholar 

  • 58.

    Hunt, C. L. et al. Aggregating behaviour in invasive Caribbean lionfish is driven by habitat complexity. Sci. Rep. 9, 783 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 59.

    Millott, N. & Yoshida, M. The shadow reaction of Diadema antillarum Philippi I: the spine response and its relation to the stimulus. J. Exp. Biol. 37, 363–375 (1960).

    Article 

    Google Scholar 

  • 60.

    Millott, N. & Yoshida, M. The shadow reaction of Diadema antillarum Philippi II: inhibition by light. J. Exp. Biol. 37, 376–389 (1960).

    Article 

    Google Scholar 

  • 61.

    Raible, F. et al. Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev. Biol. 300, 461–475 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Ullrich-Lüter, E. M., D’Aniello, S. & Arnone, M. I. C-opsin expressing photoreceptors in echinoderms. Integr. Comp. Biol. 53, 27–38 (2013).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 63.

    Yoshida, M. On the light response of the chromatophore of the sea-urchin, Diadema setosum (Leske). J. Exp. Biol. 33, 119–123 (1956).

    Article 

    Google Scholar 

  • 64.

    JPL MUR MEaSUREs. GHRSST Level 4 MUR global foundation sea surface temperature analysis. Version 4.1 PO.DAAC, CA, USA. Dataset accessed 23 Jan 2021 at https://doi.org/10.5067/GHGMR-4FJ04 (2015).

  • 65.

    Pickering, H., Whitmarsh, D. & Jensen, A. Artificial reefs as a tool to aid rehabilitation of coastal ecosystems: investigating the potential. Mar. Pollut. Bull. 37, 505–514 (1999).

    Article 

    Google Scholar 

  • 66.

    Fitzhardinge, R. C. & Bailey-Brock, J. H. Colonization of artificial reef materials by corals and other sessile organisms. Bull. Mar. Sci. 44, 567–579 (1989).

    Google Scholar 

  • 67.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna. https://www.r-project.org/. (2016).

  • 68.

    RStudio Team. RStudio: Integrated Development for R (2015).

  • 69.

    Dinno, A. conover.test: Conover-Iman test of multiple comparisons using rank sums. R Package Version 1.1.5. (2017).

  • 70.

    Scheibling, R. E. & Robinson, M. C. Settlement behaviour and early post-settlement predation of the sea urchin Strongylocentrotus droebachiensis. J. Exp. Mar. Biol. Ecol. 365, 59–66 (2008).

    Article 

    Google Scholar 

  • 71.

    Kintzing, M. D. & Butler, M. J. The influence of shelter, conspecifics, and threat of predation on the behavior of the long-spined sea urchin (Diadema antillarum). J. Shellfish Res. 33, 781–785 (2014).

    Article 

    Google Scholar 

  • 72.

    Clemente, S., Hernández, J. C., Toledo, K. & Brito, A. Predation upon Diadema aff. antillarum in barren grounds in the Canary Islands. Sci. Mar. 71, 745–754 (2007).

    Article 

    Google Scholar 

  • 73.

    Jennings, L. B. & Hunt, H. L. Settlement, recruitment and potential predators and competitors of juvenile echinoderms in the rocky subtidal zone. Mar. Biol. 157, 307–316 (2010).

    Article 

    Google Scholar 

  • 74.

    Rodríguez-Barreras, R. Demographic implications of predatory wrasses on low-density Diadema antillarum populations. Mar. Biol. Res. 14, 383–391 (2018).

    Article 

    Google Scholar 

  • 75.

    Delgado, G. A. & Sharp, W. C. Does artificial shelter have a place in Diadema antillarum restoration in the Florida Keys? Tests of habitat manipulation and sheltering behavior. Glob. Ecol. Conserv. 26, e01502 (2021).

    Article 

    Google Scholar 

  • 76.

    Sammarco, P. W. & Williams, A. H. Damselfish territoriality: influence on Diadema antillarum distribution and implications for coral community structure. Mar. Ecol. Prog. Ser. 8, 53–59 (1982).

    ADS 
    Article 

    Google Scholar 

  • 77.

    Nedimyer, K. & Moe, M. A. 2003. Techniques development for the reestablishment of the long-spined sea urchin, Diadema antillarum, on two small patch reefs in the upper Florida Keys. 2002–2003 Sanctuary Science Report: An Ecosystem Report Card After Five Years of Marine Zoning.

  • 78.

    Idjadi, J., Haring, R. & Precht, W. Recovery of the sea urchin Diadema antillarum promotes scleractinian coral growth and survivorship on shallow Jamaican reefs. Mar. Ecol. Prog. Ser. 403, 91–100 (2010).

    ADS 
    Article 

    Google Scholar 

  • 79.

    Macia, S., Robinson, M. P. & Nalevanko, A. Experimental dispersal of recovering Diadema antillarum increases grazing intensity and reduces macroalgal abundance on a coral reef. Mar. Ecol. Prog. Ser. 348, 173–182 (2007).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    On course to create a fusion power plant

    Robotic solution for disinfecting food production plants wins agribusiness prize