in

The effect of COVID19 pandemic restrictions on an urban rodent population

  • 1.

    Tobin, M. E. & Fall, M. W. USDA National Wildlife Research Center-Staff Publications Vol. 67, 1–21 (USDA National Wildlife Research Center-Staff Publications, 2006).

    Google Scholar 

  • 2.

    Meerburg, B. G., Singleton, G. R. & Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 35, 221–270. https://doi.org/10.1080/10408410902989837 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Meerburg, B. G., Singleton, G. R. & Leirs, H. The Year of the Rat ends—Time to fight hunger!. Pest. Manag. Sci. 65, 351–352. https://doi.org/10.1002/ps.1718 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Mills, J. N. The role of rodents in emerging human disease: Examples from the hantaviruses and arenaviruses. in Ecologically-Based Rodent Management (eds Grant R. Singleton, Lyn A. Hinds, Herwig Leirs, & Zhibin Zhang) 134–160 (Australian Centre for International Agricultural Research, 1999)

  • 5.

    Barnett, S. A. The Story of Rats: Their Impact on Us, and Our Impact on Them (Allen & Unwin, 2001).

    Google Scholar 

  • 6.

    Almeida, A., Corrigan, R. M. & Sarno, R. The economic impact of commensal rodents on small businesses in Manhattan’s Chinatown: Trends and possible causes. Suburban. Sustain. 1, 1–15. https://doi.org/10.5038/2164-0866.1.1.2 (2013).

    Article 

    Google Scholar 

  • 7.

    Strand, T. M. & Lundkvist, Å. Rat-borne diseases at the horizon. A systematic review on infectious agents carried by rats in Europe 1995–2016. Infect. Ecol. Epidemiol. 9, 1553461–1553461. https://doi.org/10.1080/20008686.2018.1553461 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Firth, C. et al. Detection of zoonotic pathogens and characterization of novel viruses carried by commensal Rattus norvegicus in New York City. MBio 5, e01933-e11914. https://doi.org/10.1128/mBio.01933-14 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Frye, M. J. et al. Preliminary survey of ectoparasites and associated pathogens from Norway rats in New York City. J. Med. Entomol. 52, 253–259. https://doi.org/10.1093/jme/tjv014 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Cross, R. W. et al. Old world hantaviruses in rodents in New Orleans, Louisiana. Am. J. Trop. Med. Hyg. 90, 897–901. https://doi.org/10.4269/ajtmh.13-0683 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Peterson, A. C. et al. Rodent-borne Bartonella infection varies according to host species within and among cities. EcoHealth 14, 771–782. https://doi.org/10.1007/s10393-017-1291-4 (2017).

    MathSciNet 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Rael, R. C. et al. Rat lungworm infection in rodents across post-katrina New Orleans, Louisiana, USA. Emerg. Infect. Dis. 24, 2176 (2018).

    Article 

    Google Scholar 

  • 13.

    Bordes, F., Blasdell, K. & Morand, S. Transmission ecology of rodent-borne diseases: New frontiers. Integr. Zool. 10, 424–435. https://doi.org/10.1111/1749-4877.12149 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 14.

    Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci. 112, 7039–7044. https://doi.org/10.1073/pnas.1501598112 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Stenseth, N. C. et al. Mice, rats, and people: The bio-economics of agricultural rodent pests. Front. Ecol. Environ. 1, 367–375. https://doi.org/10.1890/1540-9295(2003)001[0367:MRAPTB]2.0.CO;2 (2003).

    Article 

    Google Scholar 

  • 16.

    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288. https://doi.org/10.1016/j.ecolecon.2004.10.002 (2005).

    Article 

    Google Scholar 

  • 17.

    Feng, A. Y. T. & Himsworth, C. G. The secret life of the city rat: A review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus). Urban Ecosyst. 17, 149–162. https://doi.org/10.1007/s11252-013-0305-4 (2014).

    Article 

    Google Scholar 

  • 18.

    Himsworth, C. G., Parsons, K. L., Jardine, C. & Patrick, D. M. Rats, cities, people, and pathogens: A systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers. Vector-Borne Zoonotic Diseases 13, 349–359. https://doi.org/10.1089/vbz.2012.1195 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 19.

    Lambropoulos, A. S., Fine, J. B., Perbeck, A. & Torres, D. Rodent control in urban areas: An interdisciplinary approach. J. Environ. Health 61, 12 (1999).

    Google Scholar 

  • 20.

    Peterson, A. C. et al. Rodent assemblage structure reflects socioecological mosaics of counter-urbanization across post-hurricane Katrina New Orleans. Landsc. Urban. Plann. 195, 103710. https://doi.org/10.1016/j.landurbplan.2019.103710 (2020).

    Article 

    Google Scholar 

  • 21.

    Shiels, A. B., Lombard, C. D., Shiels, L. & Hillis-Starr, Z. Invasive rat establishment and changes in small mammal populations on Caribbean Islands following two hurricanes. Glob. Ecol. Conserv. 22, e00986. https://doi.org/10.1016/j.gecco.2020.e00986 (2020).

    Article 

    Google Scholar 

  • 22.

    Htwe, N. M., Singleton, G. R. & Nelson, A. D. Can rodent outbreaks be driven by major climatic events? Evidence from cyclone Nargis in the Ayeyawady Delta, Myanmar. Pest. Manag. Sci. 69, 378–385. https://doi.org/10.1002/ps.3292 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Eskew, E. A. & Olival, K. J. De-urbanization and zoonotic disease risk. EcoHealth 15, 707–712. https://doi.org/10.1007/s10393-018-1359-9 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Gulachenski, A., Ghersi, B. M., Lesen, A. E. & Blum, M. J. Abandonment, ecological assembly and public health risks in counter-urbanizing cities. Sustainability 8, 491 (2016).

    Article 

    Google Scholar 

  • 25.

    Rael, R. C., Peterson, A. C., Ghersi, B. M., Childs, J. & Blum, M. J. Disturbance, reassembly, and disease risk in socioecological systems. EcoHealth 13, 450–455. https://doi.org/10.1007/s10393-016-1157-1 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 26.

    LaDeau, S. L., Leisnham, P. T., Biehler, D. & Bodner, D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: Understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int. J. Environ. Res. Public Health 10, 1505–1526 (2013).

    Article 

    Google Scholar 

  • 27.

    Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evolut. 4, 1156–1159. https://doi.org/10.1038/s41559-020-1237-z (2020).

    Article 

    Google Scholar 

  • 28.

    Coronavirus: Why more rats are being spotted during quarantine. BBC News. https://www.bbc.com/news/world-us-canada-52177587 (2020).

  • 29.

    Latest pest control news. Features and blog articles from British Pest Control Association. BPCA. https://bpca.org.uk/News-and-Blog/advice-for-pest-professionals-operating-during-covid-19 (2020).

  • 30.

    Rodent control. Centers For Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/php/rodents.html (2020).

  • 31.

    Zhou, N. Sydney braces for rat ‘plague’ after Covid-19 forces hungry rodents to turn to cannibalism. in The Guardian. Australian Edition. https://www.theguardian.com/australia-news/2020/may/28/sydney-braces-for-rat-plague-after-covid-19-forces-hungry-rodents-to-turn-to-cannibalism (2020).

  • 32.

    The Pest Control Sydney sector warns of increase of rat activity due to COVID-19 shuts down food supply. Safe Pest Control. https://safepestcontrol.net.au/pest-control-sydney-sector-warns-increase-rat-activity-covid-19/ (2020).

  • 33.

    Sutton, C. Rats on the rise as shutdown cuts their food supply. in Tweed Daily News. https://www.tweeddailynews.com.au/news/covid-19-leads-to-rat-explosion/3989127/ (2020).

  • 34.

    Mannix, L. The Age (Nine Entertainment Co., 2020).

    Google Scholar 

  • 35.

    Prokop, P., Fančovičová, J. & Fedor, P. Health is associated with antiparasite behavior and fear of disease-relevant animals in humans. Ecol. Psychol. 22, 222–237. https://doi.org/10.1080/10407413.2010.496676 (2010).

    Article 

    Google Scholar 

  • 36.

    Byers, K. A., Cox, S. M., Lam, R. & Himsworth, C. G. “They’re always there”: Resident experiences of living with rats in a disadvantaged urban neighbourhood. BMC Public Health 19, 853. https://doi.org/10.1186/s12889-019-7202-6 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    German, D. & Latkin, C. A. Exposure to urban rats as a community stressor among low-income urban residents. J. Community Psychol. 44, 249–262. https://doi.org/10.1002/jcop.21762 (2016).

    Article 

    Google Scholar 

  • 38.

    Elgar, M. A., Crespi, B. J. & Crespi, D. B. B. J. Cannibalism: Ecology and Evolution Among Diverse Taxa (Oxford University Press, 1992).

    Google Scholar 

  • 39.

    Depoux, A. et al. The pandemic of social media panic travels faster than the COVID-19 outbreak. J. Travel Med. https://doi.org/10.1093/jtm/taaa031 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Himsworth, C. G. et al. A mixed methods approach to exploring the relationship between Norway rat (Rattus norvegicus) abundance and features of the urban environment in an inner-city neighborhood of Vancouver, Canada. PLoS ONE 9, e97776. https://doi.org/10.1371/journal.pone.0097776 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Parsons, M. H. et al. Rats and the COVID-19 pandemic: Early data on the global emergence of rats in response to social distancing. medRxiv. https://doi.org/10.1101/2020.07.05.20146779 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Murray, M. H. et al. Public complaints reflect rat relative abundance across diverse urban neighborhoods. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2018.00189 (2018).

    Article 

    Google Scholar 

  • 43.

    Király, O. et al. Preventing problematic internet use during the COVID-19 pandemic: Consensus guidance. Compr. Psychiatry 100, 152180. https://doi.org/10.1016/j.comppsych.2020.152180 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Wiederhold, B. K. Social media use during social distancing. Cyberpsychol. Behav. Soc. Netw. 23, 275–276. https://doi.org/10.1089/cyber.2020.29181.bkw (2020).

    Article 
    PubMed 

    Google Scholar 

  • 45.

    Harbison, B. PMPs re-strategize rodent control in response to COVID-19 pandemic. Pest Control Technology. https://www.pctonline.com/article/pmps-restrategize-rodent-control-respose-covid-19/ (2020).

  • 46.

    Sieg, L. As Japan fights coronavirus with shutdowns, rats emerge onto deserted streets. Reuters. https://www.reuters.com/article/us-health-coronavirus-japan-rats-idUSKCN22A0DG (2020).

  • 47.

    Carthey, A. J. R. & Banks, P. B. Naïve, bold, or just hungry? An invasive exotic prey species recognises but does not respond to its predators. Biol. Invasions 20, 3417–3429. https://doi.org/10.1007/s10530-018-1782-4 (2018).

    Article 

    Google Scholar 

  • 48.

    Sanchez, F., Korine, C., Kotler, B. P. & Pinshow, B. Ethanol concentration in food and body condition affect foraging behavior in Egyptian fruit bats (Rousettus aegyptiacus). Naturwissenschaften 95, 561–567. https://doi.org/10.1007/s00114-008-0359-y (2008).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Berger-Tal, O. & Kotler, B. P. State of emergency: Behavior of gerbils is affected by the hunger state of their predators. Ecology 91, 593–600. https://doi.org/10.1890/09-0112.1 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 50.

    Berger-Tal, O., Mukherjee, S., Kotler, B. P. & Brown, J. S. Complex state-dependent games between owls and gerbils. Ecol. Lett. 13, 302–310. https://doi.org/10.1111/j.1461-0248.2010.01447.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • 51.

    Zuur, A. F. & Ieno, E. N. Beginner’s Guide to Zero-Inflated Models with R (Highland Statistics Limited, 2016).

    Google Scholar 

  • 52.

    Zuur, A. F., Ieno, E. N. & Saveliev, A. A. Zero Inflated Models and Generalized Linear Mixed Models with R (Highland Statistics Limited, 2012).

    Google Scholar 

  • 53.

    Cavia, R., Cueto, G. R. & Suárez, O. V. Changes in rodent communities according to the landscape structure in an urban ecosystem. Landsc. Urban Plann. 90, 11–19. https://doi.org/10.1016/j.landurbplan.2008.10.017 (2009).

    Article 

    Google Scholar 

  • 54.

    Restrictions on non-essential services. Australian Government Business. https://www.business.gov.au/risk-management/emergency-management/coronavirus-information-and-support-for-business/restrictions-on-non-essential-services (2020).

  • 55.

    Barnett, S. A. Experiments on “neophobia” in wild and laboratory rats. Br. J. Psychol. 49, 195–201. https://doi.org/10.1111/j.2044-8295.1958.tb00657.x (1958).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 56.

    Barnett, S. A. & Cowan, P. E. Activity, exploration, curiosity and fear: An ethological study. Interdisc. Sci. Rev. 1, 43–62. https://doi.org/10.1179/030801876789768534 (1976).

    Article 

    Google Scholar 

  • 57.

    Chitty, D. & Southern, H. N. Control of Rats and Mice (Agricultural Extension Service, University of Wyoming, 1954).

    Google Scholar 

  • 58.

    Taylor, K. D., Hammond, L. E. & Quy, R. J. The reactions of common rats to four types of live-capture trap. J. Appl. Ecol. 11, 453–459. https://doi.org/10.2307/2402199 (1974).

    Article 

    Google Scholar 

  • 59.

    Brunton, C. F. A., Macdonald, D. W. & Buckle, A. P. Behavioural resistance towards poison baits in brown rats, Rattus norvegicus. Appl. Anim. Behav. Sci. 38, 159–174. https://doi.org/10.1016/0168-1591(93)90063-U (1993).

    Article 

    Google Scholar 

  • 60.

    Inglis, I. R. R. et al. Foraging behaviour of wild rats (Rattus norvegicus) towards new foods and bait containers. Appl. Anim. Behav. Sci. 47, 175–190. https://doi.org/10.1016/0168-1591(95)00674-5 (1996).

    Article 

    Google Scholar 

  • 61.

    Domjan, M. Poison-induced neophobia in rats: Role of stimulus generalization of conditioned taste aversions. Anim. Learn. Behav. 3, 205–211. https://doi.org/10.3758/BF03213432 (1975).

    Article 

    Google Scholar 

  • 62.

    Rusiniak, K. W., Hankins, W. G., Garcia, J. & Brett, L. P. Flavor-illness aversions: Potentiation of odor by taste in rats. Behav. Neural Biol. 25, 1–17. https://doi.org/10.1016/S0163-1047(79)90688-5 (1979).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 63.

    Fowler, C. W. Density dependence as related to life history strategy. Ecology 62, 602–610. https://doi.org/10.2307/1937727 (1981).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Korobenko, L., Kamrujjaman, M. & Braverman, E. Persistence and extinction in spatial models with a carrying capacity driven diffusion and harvesting. J. Math. Anal. Appl. 399, 352–368. https://doi.org/10.1016/j.jmaa.2012.09.057 (2013).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 65.

    Perry, J. S. The reproduction of the wild brown rat (Rattus norvegicus Erxleben). Proc. Zool. Soc. Lond. 115, 19–46 (1945).

    Article 

    Google Scholar 

  • 66.

    Emlen, J. T., Stokes, A. W. & Winsor, C. P. The rate of recovery of decimated populations of brown rats in nature. Ecology 29, 133–145. https://doi.org/10.2307/1932809 (1948).

    Article 

    Google Scholar 

  • 67.

    Richardson, J. L. et al. Significant genetic impacts accompany an urban rat control campaign in Salvador, Brazil. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2019.00115 (2019).

    Article 

    Google Scholar 

  • 68.

    Schultz, L. A., Collier, G. & Johnson, D. F. Behavioral strategies in the cold: Effects of feeding and nesting costs. Physiol. Behav. 67, 107–115. https://doi.org/10.1016/S0031-9384(99)00041-4 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 69.

    Collier, G. H., Johnson, D. F., Naveira, J. & Cybulski, K. A. Ambient temperature and food costs: Effects on behavior patterns in rats. Am. J. Physiol. Regulat. Integr. Comparat. Physiol. 257, R1328–R1334. https://doi.org/10.1152/ajpregu.1989.257.6.R1328 (1989).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Frantz, S. C. & Comings, J. P. Evaluation of urban rodent infestations- An approach in Nepal. Proc. Vertebr. Pest Conf. 7, 279–290 (1976).

    Google Scholar 

  • 71.

    Margulis, H. L. Rat fields, neighborhood sanitation, and rat complaints in Newark, New Jersey. Geogr. Rev. 67, 221–231. https://doi.org/10.2307/214022 (1977).

    Article 

    Google Scholar 

  • 72.

    Climate statistics for Australian locations. Australian Bureau of Meteorology. http://www.bom.gov.au/climate/averages/tables/cw_066196_All.shtml (2020).

  • 73.

    Chapman, S., Watson, J. E. M., Salazar, A., Thatcher, M. & McAlpine, C. A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 32, 1921–1935. https://doi.org/10.1007/s10980-017-0561-4 (2017).

    Article 

    Google Scholar 

  • 74.

    Byers, K. A., Lee, M. J., Patrick, D. M. & Himsworth, C. G. Rats about town: A systematic review of rat movement in urban ecosystems. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2019.00013 (2019).

    Article 

    Google Scholar 

  • 75.

    Liu, Y. et al. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. bioRxiv https://doi.org/10.1101/2020.04.22.046565 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Singleton, G., Leirs, H., Hinds, L. & Zhang, Z. Ecologically-Based Management of Rodent Pests—Re-evaluating Our Approach to an Old problem 17–29 (Australian Centre for International Agricultural Research (ACIAR), 1999).

    Google Scholar 

  • 77.

    Sydney (C) (Statistical Local Area). Australian Bureau of Statistics. https://quickstats.censusdata.abs.gov.au/census_services/getproduct/census/2016/quickstat/LGA17200?opendocument (2016).

  • 78.

    Fritzboger, P. inventor. Anticimex Innovation Centre A/S, assignee. A trap. Australia patent 2014359825 (2014).

  • 79.

    R Core Team. R: A language and environment for statistical computing v. 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria, 2019).

  • 80.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • 81.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear lixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • 82.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

    Book 

    Google Scholar 

  • 83.

    Sweet, S. A. & Grace-Martin, K. Data Analysis with SPSS: A First Course in Applied Statistics (Allyn and Bacon, 2008).

    Google Scholar 

  • 84.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage Publications, 2018).

    Google Scholar 

  • 85.

    Lenth, R. & Herve, M. Emmeans: Estimated marginal means, aka least-square means. v. R package version 1.1. 2 (2018).

  • 86.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363. https://doi.org/10.1002/bimj.200810425 (2008).

    MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 

  • 87.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, 2009).

    Book 

    Google Scholar 

  • 88.

    ESRI. ArcGIS Desktop v. Release 10.5 (Environmental Systems Research Institute, Redlands, CA, 2017).

  • 89.

    IBM Corp. IBM SPSS Statistics for Windows v. 24.0 (IBM Corp., Armonk, NY, 2016).

  • 90.

    Bedoya-Pérez, M. A., Ward, M. P., Loomes, M. & Crowther, M. S. Flick SMART multi-catch rodent station and bait station data sets: Council of the city of Sydney, October 2019 to July 2020. Dryad Dataset. https://doi.org/10.5061/dryad.4tmpg4f81(2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Observed increasing water constraint on vegetation growth over the last three decades

    Rapid evolution of bacterial mutualism in the plant rhizosphere