van Schaik, C. P. & Isler, K. Life-history evolution. In The Evolution of Primate Societies (eds Mitani, J., Call, J., Kappeler, P. M. et al.) 220–244 (Chicago University Press, 2012).
Pontzer, H. et al. Primate energetics and life history. Proc. Natl. Acad. Sci. USA 111, 1433–1437. https://doi.org/10.1073/pnas.1316940111 (2014).
Google Scholar
Burger, J. R., Hou, C. & Brown, J. H. Toward a metabolic theory of life history. Proc. Natl. Acad. Sci. USA 116, 26653–26661. https://doi.org/10.1073/pnas.1907702116 (2019).
Google Scholar
Charnov, E. L. & Berrigan, D. Why do female primates have such long lifespans and so few babies? Or life in the slow lane. Evol. Anthropol. 1, 191–194. https://doi.org/10.1002/evan.1360010604 (1993).
Google Scholar
Jones, J. H. Primates and the evolution of long, slow life histories. Curr. Biol. 21, R708–R717. https://doi.org/10.1016/j.cub.2011.08.025 (2011).
Google Scholar
Speakman, J. R. Body size, energy metabolism and lifespan. J. Exp. Biol. 208, 1717–1730. https://doi.org/10.1242/jeb.01556 (2005).
Google Scholar
Martin, R. D. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293, 57–60. https://doi.org/10.1038/293057a0 (1981).
Google Scholar
Read, A. F. & Harvey, P. H. Life history differences among the eutherian radiations. J. Zool. 219, 329–353. https://doi.org/10.1111/j.1469-7998.1989.tb02584.x (1989).
Google Scholar
Harvey, P. H., Pagel, M. D. & Rees, J. A. Mammalian metabolism and life histories. Am. Nat. 137, 556–566 (1991).
Google Scholar
Kappeler, P. Causes and consequences of life-history variation among strepsirhine primates. Am. Nat. 148, 868–891 (1996).
Google Scholar
Dausmann, K.H. Flexible patterns in energy savings: heterothermy in primates. J. Zool. 292, 101–111, https://doi.org/10.1111/jzo.12104 (2014)
Richard, A. F., Dewar, R. E., Schwartz, M. & Ratsirarson, J. Mass change, environmental variability and female fertility in wild Propithecus verreauxi. J. Hum. Evol. 39, 381–391. https://doi.org/10.1006/jhev.2000.0427 (2000).
Google Scholar
Richard, A. F., Dewar, R. E., Schwartz, M. & Ratsirarson, J. Life in the slow lane? Demography and life histories of male and female sifaka (Propithecus verreauxi verreauxi). J. Zool. (London) 256, 421–436. https://doi.org/10.1017/S0952836902000468 (2002).
Google Scholar
Kappeler, P. K. & Fichtel, C. Eco-evo-devo of the lemur syndrome: did adaptive behavioral plasticity get canalized in a large primate radiation? Front. Zool. 12, S15. https://doi.org/10.1186/1742-9994-12-S1-S15 (2015).
Google Scholar
Dewar, R. E. & Richard, A. F. Evolution in the hypervariable environment of Madagascar. Proc. Natl. Acad. Sci. USA 104, 13723–13727. https://doi.org/10.1073/pnas.0704346104 (2007).
Google Scholar
Wright, P. C. Lemur traits and Madagascar ecology: coping with an island environment. Yearb. Phys. Anthropol. 42, 31–72. (1999).
Google Scholar
Ganzhorn, J. U. et al. Possible fruit protein effects on primate communities in Madagascar and the Neotropics. PLoS ONE 4, e8253. https://doi.org/10.1371/journal.pone.0008253 (2009).
Google Scholar
Pontzer, H., Raichlen, D. A., Shumaker, R. W., Ocobock, C. & Wich, S. A. Metabolic adaptation for low energy throughput in orangutans. Proc. Natl. Acad. Sci. USA 107, 14048–14052. https://doi.org/10.1073/pnas.1001031107 (2010).
Google Scholar
Simmen, B., Darlu, P., Hladik, C. M. & Pasquet, P. Scaling of free-ranging primate energetics with body mass predicts low energy expenditure in humans. Physiol. Behav. 138, 193–199. https://doi.org/10.1016/j.physbeh.2014.10.018 (2015).
Google Scholar
Pontzer, H. et al. Metabolic acceleration and the evolution of human brain size and life history. Nature 533, 390–392. https://doi.org/10.1038/nature17654 (2016).
Google Scholar
Chevillard, M.-C. Capacités thermorégulatrices d’un lémurien malgache, Microcebus murinus. Ph.D. Thesis, University Paris VII, Paris (1976).
Genoud, M., Martin, R. D. & Glaser, D. Rate of metabolism in the smallest simian primate, the pygmy marmoset (Cebuella pygmaea). Am. J. Primatol. 41, 229–245. (1997).
Google Scholar
Snodgrass, J. J., Leonard, W. R. & Robertson, M. L. Primate bioenergetics: An evolutionary perspective. In Primate Origins: Adaptations and Evolution (eds Ravosa, M. J. & Dagosto, M.) 703–737 (Springer, Boston, 2007). https://doi.org/10.1007/978-0-387-33507-0_20.
Kurland, J. A. & Pearson, J. D. Ecological significance of hypometabolism in nonhuman primates: allometry, adaptation, and deviant diets. Am. J. Phys. Anthropol. 71, 445–457. https://doi.org/10.1002/ajpa.1330710408 (1986).
Google Scholar
Harvey, P. H., Martin, R. D. & Clutton- Brock, T. H. Life histories in a comparative perspective. In Primate Societies (eds Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W. & Struhsaker, T. T.) 181– 196 (University of Chicago Press, Chicago, 1987).
Isler, K. et al. Endocranial volumes of primate species: scaling analyses using a comprehensive and reliable data set. J. Hum. Evol. 55, 967–978. https://doi.org/10.1016/j.jhevol.2008.08.004 (2008).
Google Scholar
Simmen, B., Tarnaud, L., Marez, A. & Hladik, A. Leaf chemistry as a predictor of primate biomass and the mediating role of food selection: A case study in a folivorous lemur (Propithecus verreauxi). Am. J. Primatol. 76, 563–575. https://doi.org/10.1002/ajp.22249 (2014).
Google Scholar
Lewis, R. J. & Kappeler, P. M. Seasonality, body condition, and timing of reproduction in Propithecus verreauxi verreauxi. Am. J. Primatol. 66, 1–18. https://doi.org/10.1002/ajp.20187 (2005).
Google Scholar
Donati, D., Ricci, E., Baldi, N., Morelli, V. & Borgognini-Tarli, S. M. Behavioral thermoregulation in a gregarious lemur, Eulemur collaris: Effects of climatic and dietary-related factors. Am. J. Phys. Anthrop. 144, 355–364. https://doi.org/10.1002/ajpa.21415 (2011).
Google Scholar
Simmen, B. & Rasamimanana, H. Energy (im-)balance in frugivorous lemurs in southern Madagascar: a preliminary study in Lemur catta and Eulemur rufifrons x collaris. Folia Primatol. 89, 382–396. https://hal.archives-ouvertes.fr/hal-02349627/(2018).
Simmen, B. et al. Total energy expenditure and body composition in two free-living sympatric lemurs. PLoS ONE 5, e9860. https://doi.org/10.1371/journal.pone.0009860 (2010).
Google Scholar
Rasamimanana, H. R., Andrianome, V. N., Rambeloarivony, H. & Pasquet, P. Male and female ringtailed lemurs’ energetic strategy does not explain female dominance. In Ringtailed Lemur Biology: Lemur catta in Madagascar (eds Jolly, A., Sussman, R. W., Koyama, N. & Rasamimanana, H.) 271–95 (Springer, Chicago, 2006). https://doi.org/10.1007/978-0-387-34126-2_16
Irwin, M. T. Ecologically enigmatic lemurs: The sifakas of the eastern forests (Propithecus candidus, P. diadema, P. edwardsi, P. perrieri, and P. tattersalli). In Lemurs: Ecology and Adaptation (eds Gould, L. & Sauther, M.L.) 305–326 (Springer, New York, 2006). https://doi.org/10.1007/978-0-387-34586-4_14
Vuarin, P. et al. When to initiate torpor use? Food availability times the transition to winter phenotype in a tropical heterotherm. Oecologia 179, 43–53. https://doi.org/10.1007/s00442-015-3328-0 (2015).
Google Scholar
Nagy, K. A., Girard, I. A. & Brown, T. K. Energetics of free-ranging mammals, reptiles, and birds. Annu. Rev. Nutr. 19, 247–277. https://doi.org/10.1146/annurev.nutr.19.1.247 (1999).
Google Scholar
Pontzer, H. Energy expenditure in humans and other primates: A new synthesis. Annu. Rev. Anthropol. 44, 169–187. https://doi.org/10.1146/annurev-anthro-102214-013925 (2015).
Google Scholar
Schmid, J. & Speakman, J. R. Daily energy expenditure of the grey mouse lemur (Microcebus murinus): A small primate that uses torpor. J. Comp. Physiol. B 170, 633–641. https://doi.org/10.1007/s003600000146 (2000).
Google Scholar
Stalenberg E. Biophysical ecology of the white-footed sportive lemur (Lepilemur leucopus) of southern Madagascar, Ph.D. Thesis, The Australian National University, Canberra (2019).
Schmid, J. & Speakman, J. Torpor and energetic consequences in free-ranging grey mouse lemurs (Microcebus murinus): A comparison of dry and wet forests. Naturwissenschaften 96, 609–620. https://doi.org/10.1007/s00114-009-0515-z (2009).
Google Scholar
Westerterp, K. & Speakman, J. R. Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals. Int. J. Obes. (London) 32, 1256–1263. https://doi.org/10.1038/ijo.2008.74 (2008).
Google Scholar
Muchlinski, M. N., Snodgrass, J. J. & Terranova, C. J. Muscle mass scaling in primates: An energetic and ecological perspective. Am. J. Primatol. 74, 395–407. https://doi.org/10.1002/ajp.21990 (2012).
Google Scholar
Thompson, S. D., MacMillen, R. E., Burke, E. M. & Taylor, C. R. The energetic cost of bipedal hopping in small mammals. Nature 287, 223–224. https://doi.org/10.1038/287223a0 (1980).
Google Scholar
Demes, B., Jungers, W. L., Gross, T. S. & Fleagle, J. G. Kinetics of leaping primates: Influence of substrate orientation and compliance. Am. J. Phys. Anthropol. 96, 419–429. https://doi.org/10.1002/ajpa.1330960407 (1995).
Google Scholar
Webster, K. N. & Dawson, T. J. Locomotion energetics and gait characteristics of a rat-kangaroo, Bettongia penicillata, have some kangaroo-like features. J. Comp. Physiol. B 173, 549–557. https://doi.org/10.1007/s00360-003-0364-6 (2003).
Google Scholar
Pontzer, H., Raichlen, D. A. & Sockol, M. D. From treadmill to tropics: Calculating ranging cost in chimpanzees. In Primate Locomotion: Linking Field and Laboratory Research, Developments in Primatology: Progress and Prospects (eds D’Août, K., Vereecke & E. E.) 289–309 (Springer, New York, 2011). https://doi.org/10.1007/978-1-4419-1420-0_15
Hladik, C. M. Diet and the evolution of feeding strategies among forest primates. In Omnivorous Primates. Gathering and Hunting in Human Evolution (eds Harding, R. S. O. & Teleki, G.) 215–254 (Columbia University Press, New York, 1981). https://hal.archives-ouvertes.fr/hal-00578687
Oates, J. F. (1987) Food distribution and foraging behavior. In Primate Societies (eds Smuts, B. B. et al.) 197–209 (University of Chicago Press, 1987).
Clutton-Brock, T. H. & Harvey, P. H. Primate ecology and social organization. J. Zool., (London) 183, 1–39, https://doi.org/10.1111/j.1469-7998.1977.tb04171.x (1977).
Harvey, P. & Bennett, P. Evolutionary biology: Brain size, energetics, ecology and life history patterns. Nature 306, 314–315. https://doi.org/10.1038/306314a0 (1983).
Google Scholar
Milton, K. & May, M. L. Body weight, diet and home range area in primates. Nature 259, 459–462. https://doi.org/10.1038/259459a0 (1976).
Google Scholar
Snaith, T. V. & Chapman, C. A. Primate group size and interpreting socioecological models: Do folivores really play by different rules?. Evol. Anthropol. 16, 94–106. https://doi.org/10.1002/evan.20132 (2007).
Google Scholar
Tecot, S. R. It’s all in the timing: Birth seasonality and infant survival in Eulemur rubriventer. Int. J. Primatol. 31, 715–735. https://doi.org/10.1007/s10764-010-9423-5 (2010).
Google Scholar
van Woerden, J. T., van Schaik, C. P. & Isler, K. Effects of seasonality on brain size evolution: Evidence from strepsirhine primates. Am. Nat. 176, 758–776. https://doi.org/10.1086/657045 (2010).
Google Scholar
Edwards, W., Lonsdorf, E. V. & Pontzer, H. Total energy expenditure in captive capuchins (Sapajus apella). Am. J. Primatol. 79, e22638. https://doi.org/10.1002/ajp.22638 (2017).
Google Scholar
Dugas, L. R. et al. Energy expenditure in adults living in developing compared with industrialized countries: A meta-analysis of doubly labeled water studies. Am. J. Clin. Nutr. 93, 427–441. https://doi.org/10.3945/ajcn.110.007278 (2011).
Google Scholar
Barrickman, N. L. & Lin, M. J. Encephalization, expensive tissues, and energetics: An examination of the relative costs of brain size in strepsirhines added with new data. Am. J. Phys. Anthropol. 143, 579–590. https://doi.org/10.1002/ajpa.21354 (2010).
Google Scholar
Benedict, F. G. Vital Energetics: A Study in Comparative Basal Metabolism, Carnegie Institution, Washington, 1938), Publication No 503.
Schoeller, D. A. et al. Energy expenditure by the doubly labeled water: validation in humans and proposed calculations. Am. J. Physiol. 250, R823–R830. https://doi.org/10.1152/ajpregu.1986.250.5.R823 (1986).
Google Scholar
Speakman, J. R. Doubly Labelled Water: Theory and Practice (Chapman, Hall, London, 1997). https://doi.org/10.1046/j.1365-2656.2001.00515-4.x
Chery, I., Zahariev, A., Simon, C. & Blanc, S. Analytical aspects of measuring (2)H/(1)H and (18)O/(16)O ratios in urine from doubly labelled water studies by high-temperature conversion elemental analyser-isotope-ratio mass spectrometry. Rapid Commun. Mass Spectrom. 29, 562–572. https://doi.org/10.1002/rcm.7135 (2015).
Google Scholar
Drack, S. et al. Field metabolic rate and the cost of ranging of the red-tailed sportive lemur (Lepilemur ruficaudatus). In New Directions in Lemur Studies (eds Rakotosamimanana B. et al) 83–91 (Kluwer Academic/Plenum Publishers, 1999). https://doi.org/10.1007/978-1-4615-4705-1_5
Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684. https://doi.org/10.1080/10635150490522232 (2004).
Google Scholar
Arnold, C., Matthews, L. J. & Nunn, C. L. The 10kTrees website: A new online resource for primate phylogeny. Evol. Anthropol. 19, 114–118 (2010).
Google Scholar
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org/ (2020).
RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL https://www.rstudio.com/.
Source: Ecology - nature.com