in

The energy allocation trade-offs underlying life history traits in hypometabolic strepsirhines and other primates

[adace-ad id="91168"]
  • 1.

    van Schaik, C. P. & Isler, K. Life-history evolution. In The Evolution of Primate Societies (eds Mitani, J., Call, J., Kappeler, P. M. et al.) 220–244 (Chicago University Press, 2012).

    Google Scholar 

  • 2.

    Pontzer, H. et al. Primate energetics and life history. Proc. Natl. Acad. Sci. USA 111, 1433–1437. https://doi.org/10.1073/pnas.1316940111 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Burger, J. R., Hou, C. & Brown, J. H. Toward a metabolic theory of life history. Proc. Natl. Acad. Sci. USA 116, 26653–26661. https://doi.org/10.1073/pnas.1907702116 (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Charnov, E. L. & Berrigan, D. Why do female primates have such long lifespans and so few babies? Or life in the slow lane. Evol. Anthropol. 1, 191–194. https://doi.org/10.1002/evan.1360010604 (1993).

    Article 

    Google Scholar 

  • 5.

    Jones, J. H. Primates and the evolution of long, slow life histories. Curr. Biol. 21, R708–R717. https://doi.org/10.1016/j.cub.2011.08.025 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Speakman, J. R. Body size, energy metabolism and lifespan. J. Exp. Biol. 208, 1717–1730. https://doi.org/10.1242/jeb.01556 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 7.

    Martin, R. D. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293, 57–60. https://doi.org/10.1038/293057a0 (1981).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Read, A. F. & Harvey, P. H. Life history differences among the eutherian radiations. J. Zool. 219, 329–353. https://doi.org/10.1111/j.1469-7998.1989.tb02584.x (1989).

    Article 

    Google Scholar 

  • 9.

    Harvey, P. H., Pagel, M. D. & Rees, J. A. Mammalian metabolism and life histories. Am. Nat. 137, 556–566 (1991).

    Article 

    Google Scholar 

  • 10.

    Kappeler, P. Causes and consequences of life-history variation among strepsirhine primates. Am. Nat. 148, 868–891 (1996).

    Article 

    Google Scholar 

  • 11.

    Dausmann, K.H. Flexible patterns in energy savings: heterothermy in primates. J. Zool. 292, 101–111, https://doi.org/10.1111/jzo.12104 (2014)

  • 12.

    Richard, A. F., Dewar, R. E., Schwartz, M. & Ratsirarson, J. Mass change, environmental variability and female fertility in wild Propithecus verreauxi. J. Hum. Evol. 39, 381–391. https://doi.org/10.1006/jhev.2000.0427 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Richard, A. F., Dewar, R. E., Schwartz, M. & Ratsirarson, J. Life in the slow lane? Demography and life histories of male and female sifaka (Propithecus verreauxi verreauxi). J. Zool. (London) 256, 421–436. https://doi.org/10.1017/S0952836902000468 (2002).

    Article 

    Google Scholar 

  • 14.

    Kappeler, P. K. & Fichtel, C. Eco-evo-devo of the lemur syndrome: did adaptive behavioral plasticity get canalized in a large primate radiation? Front. Zool. 12, S15. https://doi.org/10.1186/1742-9994-12-S1-S15 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Dewar, R. E. & Richard, A. F. Evolution in the hypervariable environment of Madagascar. Proc. Natl. Acad. Sci. USA 104, 13723–13727. https://doi.org/10.1073/pnas.0704346104 (2007).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Wright, P. C. Lemur traits and Madagascar ecology: coping with an island environment. Yearb. Phys. Anthropol. 42, 31–72. (1999).

    Article 

    Google Scholar 

  • 17.

    Ganzhorn, J. U. et al. Possible fruit protein effects on primate communities in Madagascar and the Neotropics. PLoS ONE 4, e8253. https://doi.org/10.1371/journal.pone.0008253 (2009).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Pontzer, H., Raichlen, D. A., Shumaker, R. W., Ocobock, C. & Wich, S. A. Metabolic adaptation for low energy throughput in orangutans. Proc. Natl. Acad. Sci. USA 107, 14048–14052. https://doi.org/10.1073/pnas.1001031107 (2010).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Simmen, B., Darlu, P., Hladik, C. M. & Pasquet, P. Scaling of free-ranging primate energetics with body mass predicts low energy expenditure in humans. Physiol. Behav. 138, 193–199. https://doi.org/10.1016/j.physbeh.2014.10.018 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Pontzer, H. et al. Metabolic acceleration and the evolution of human brain size and life history. Nature 533, 390–392. https://doi.org/10.1038/nature17654 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Chevillard, M.-C. Capacités thermorégulatrices d’un lémurien malgache, Microcebus murinus. Ph.D. Thesis, University Paris VII, Paris (1976).

  • 22.

    Genoud, M., Martin, R. D. & Glaser, D. Rate of metabolism in the smallest simian primate, the pygmy marmoset (Cebuella pygmaea). Am. J. Primatol. 41, 229–245. (1997).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Snodgrass, J. J., Leonard, W. R. & Robertson, M. L. Primate bioenergetics: An evolutionary perspective. In Primate Origins: Adaptations and Evolution (eds Ravosa, M. J. & Dagosto, M.) 703–737 (Springer, Boston, 2007). https://doi.org/10.1007/978-0-387-33507-0_20.

  • 24.

    Kurland, J. A. & Pearson, J. D. Ecological significance of hypometabolism in nonhuman primates: allometry, adaptation, and deviant diets. Am. J. Phys. Anthropol. 71, 445–457. https://doi.org/10.1002/ajpa.1330710408 (1986).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Harvey, P. H., Martin, R. D. & Clutton- Brock, T. H. Life histories in a comparative perspective. In Primate Societies (eds Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W. & Struhsaker, T. T.) 181– 196 (University of Chicago Press, Chicago, 1987).

  • 26.

    Isler, K. et al. Endocranial volumes of primate species: scaling analyses using a comprehensive and reliable data set. J. Hum. Evol. 55, 967–978. https://doi.org/10.1016/j.jhevol.2008.08.004 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 27.

    Simmen, B., Tarnaud, L., Marez, A. & Hladik, A. Leaf chemistry as a predictor of primate biomass and the mediating role of food selection: A case study in a folivorous lemur (Propithecus verreauxi). Am. J. Primatol. 76, 563–575. https://doi.org/10.1002/ajp.22249 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Lewis, R. J. & Kappeler, P. M. Seasonality, body condition, and timing of reproduction in Propithecus verreauxi verreauxi. Am. J. Primatol. 66, 1–18. https://doi.org/10.1002/ajp.20187 (2005).

    Article 

    Google Scholar 

  • 29.

    Donati, D., Ricci, E., Baldi, N., Morelli, V. & Borgognini-Tarli, S. M. Behavioral thermoregulation in a gregarious lemur, Eulemur collaris: Effects of climatic and dietary-related factors. Am. J. Phys. Anthrop. 144, 355–364. https://doi.org/10.1002/ajpa.21415 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 30.

    Simmen, B. & Rasamimanana, H. Energy (im-)balance in frugivorous lemurs in southern Madagascar: a preliminary study in Lemur catta and Eulemur rufifrons x collaris. Folia Primatol. 89, 382–396. https://hal.archives-ouvertes.fr/hal-02349627/(2018).

  • 31.

    Simmen, B. et al. Total energy expenditure and body composition in two free-living sympatric lemurs. PLoS ONE 5, e9860. https://doi.org/10.1371/journal.pone.0009860 (2010).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Rasamimanana, H. R., Andrianome, V. N., Rambeloarivony, H. & Pasquet, P. Male and female ringtailed lemurs’ energetic strategy does not explain female dominance. In Ringtailed Lemur Biology: Lemur catta in Madagascar (eds Jolly, A., Sussman, R. W., Koyama, N. & Rasamimanana, H.) 271–95 (Springer, Chicago, 2006). https://doi.org/10.1007/978-0-387-34126-2_16

  • 33.

    Irwin, M. T. Ecologically enigmatic lemurs: The sifakas of the eastern forests (Propithecus candidus, P. diadema, P. edwardsi, P. perrieri, and P. tattersalli). In Lemurs: Ecology and Adaptation (eds Gould, L. & Sauther, M.L.) 305–326 (Springer, New York, 2006). https://doi.org/10.1007/978-0-387-34586-4_14

  • 34.

    Vuarin, P. et al. When to initiate torpor use? Food availability times the transition to winter phenotype in a tropical heterotherm. Oecologia 179, 43–53. https://doi.org/10.1007/s00442-015-3328-0 (2015).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 35.

    Nagy, K. A., Girard, I. A. & Brown, T. K. Energetics of free-ranging mammals, reptiles, and birds. Annu. Rev. Nutr. 19, 247–277. https://doi.org/10.1146/annurev.nutr.19.1.247 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Pontzer, H. Energy expenditure in humans and other primates: A new synthesis. Annu. Rev. Anthropol. 44, 169–187. https://doi.org/10.1146/annurev-anthro-102214-013925 (2015).

    Article 

    Google Scholar 

  • 37.

    Schmid, J. & Speakman, J. R. Daily energy expenditure of the grey mouse lemur (Microcebus murinus): A small primate that uses torpor. J. Comp. Physiol. B 170, 633–641. https://doi.org/10.1007/s003600000146 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Stalenberg E. Biophysical ecology of the white-footed sportive lemur (Lepilemur leucopus) of southern Madagascar, Ph.D. Thesis, The Australian National University, Canberra (2019).

  • 39.

    Schmid, J. & Speakman, J. Torpor and energetic consequences in free-ranging grey mouse lemurs (Microcebus murinus): A comparison of dry and wet forests. Naturwissenschaften 96, 609–620. https://doi.org/10.1007/s00114-009-0515-z (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Westerterp, K. & Speakman, J. R. Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals. Int. J. Obes. (London) 32, 1256–1263. https://doi.org/10.1038/ijo.2008.74 (2008).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Muchlinski, M. N., Snodgrass, J. J. & Terranova, C. J. Muscle mass scaling in primates: An energetic and ecological perspective. Am. J. Primatol. 74, 395–407. https://doi.org/10.1002/ajp.21990 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 42.

    Thompson, S. D., MacMillen, R. E., Burke, E. M. & Taylor, C. R. The energetic cost of bipedal hopping in small mammals. Nature 287, 223–224. https://doi.org/10.1038/287223a0 (1980).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Demes, B., Jungers, W. L., Gross, T. S. & Fleagle, J. G. Kinetics of leaping primates: Influence of substrate orientation and compliance. Am. J. Phys. Anthropol. 96, 419–429. https://doi.org/10.1002/ajpa.1330960407 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Webster, K. N. & Dawson, T. J. Locomotion energetics and gait characteristics of a rat-kangaroo, Bettongia penicillata, have some kangaroo-like features. J. Comp. Physiol. B 173, 549–557. https://doi.org/10.1007/s00360-003-0364-6 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Pontzer, H., Raichlen, D. A. & Sockol, M. D. From treadmill to tropics: Calculating ranging cost in chimpanzees. In Primate Locomotion: Linking Field and Laboratory Research, Developments in Primatology: Progress and Prospects (eds D’Août, K., Vereecke & E. E.) 289–309 (Springer, New York, 2011). https://doi.org/10.1007/978-1-4419-1420-0_15

  • 46.

    Hladik, C. M. Diet and the evolution of feeding strategies among forest primates. In Omnivorous Primates. Gathering and Hunting in Human Evolution (eds Harding, R. S. O. & Teleki, G.) 215–254 (Columbia University Press, New York, 1981). https://hal.archives-ouvertes.fr/hal-00578687

  • 47.

    Oates, J. F. (1987) Food distribution and foraging behavior. In Primate Societies (eds Smuts, B. B. et al.) 197–209 (University of Chicago Press, 1987).

    Google Scholar 

  • 48.

    Clutton-Brock, T. H. & Harvey, P. H. Primate ecology and social organization. J. Zool., (London) 183, 1–39, https://doi.org/10.1111/j.1469-7998.1977.tb04171.x (1977).

  • 49.

    Harvey, P. & Bennett, P. Evolutionary biology: Brain size, energetics, ecology and life history patterns. Nature 306, 314–315. https://doi.org/10.1038/306314a0 (1983).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Milton, K. & May, M. L. Body weight, diet and home range area in primates. Nature 259, 459–462. https://doi.org/10.1038/259459a0 (1976).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Snaith, T. V. & Chapman, C. A. Primate group size and interpreting socioecological models: Do folivores really play by different rules?. Evol. Anthropol. 16, 94–106. https://doi.org/10.1002/evan.20132 (2007).

    Article 

    Google Scholar 

  • 52.

    Tecot, S. R. It’s all in the timing: Birth seasonality and infant survival in Eulemur rubriventer. Int. J. Primatol. 31, 715–735. https://doi.org/10.1007/s10764-010-9423-5 (2010).

    Article 

    Google Scholar 

  • 53.

    van Woerden, J. T., van Schaik, C. P. & Isler, K. Effects of seasonality on brain size evolution: Evidence from strepsirhine primates. Am. Nat. 176, 758–776. https://doi.org/10.1086/657045 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 54.

    Edwards, W., Lonsdorf, E. V. & Pontzer, H. Total energy expenditure in captive capuchins (Sapajus apella). Am. J. Primatol. 79, e22638. https://doi.org/10.1002/ajp.22638 (2017).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Dugas, L. R. et al. Energy expenditure in adults living in developing compared with industrialized countries: A meta-analysis of doubly labeled water studies. Am. J. Clin. Nutr. 93, 427–441. https://doi.org/10.3945/ajcn.110.007278 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 56.

    Barrickman, N. L. & Lin, M. J. Encephalization, expensive tissues, and energetics: An examination of the relative costs of brain size in strepsirhines added with new data. Am. J. Phys. Anthropol. 143, 579–590. https://doi.org/10.1002/ajpa.21354 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 57.

    Benedict, F. G. Vital Energetics: A Study in Comparative Basal Metabolism, Carnegie Institution, Washington, 1938), Publication No 503.

  • 58.

    Schoeller, D. A. et al. Energy expenditure by the doubly labeled water: validation in humans and proposed calculations. Am. J. Physiol. 250, R823–R830. https://doi.org/10.1152/ajpregu.1986.250.5.R823 (1986).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 59.

    Speakman, J. R. Doubly Labelled Water: Theory and Practice (Chapman, Hall, London, 1997). https://doi.org/10.1046/j.1365-2656.2001.00515-4.x

  • 60.

    Chery, I., Zahariev, A., Simon, C. & Blanc, S. Analytical aspects of measuring (2)H/(1)H and (18)O/(16)O ratios in urine from doubly labelled water studies by high-temperature conversion elemental analyser-isotope-ratio mass spectrometry. Rapid Commun. Mass Spectrom. 29, 562–572. https://doi.org/10.1002/rcm.7135 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 61.

    Drack, S. et al. Field metabolic rate and the cost of ranging of the red-tailed sportive lemur (Lepilemur ruficaudatus). In New Directions in Lemur Studies (eds Rakotosamimanana B. et al) 83–91 (Kluwer Academic/Plenum Publishers, 1999). https://doi.org/10.1007/978-1-4615-4705-1_5

  • 62.

    Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684. https://doi.org/10.1080/10635150490522232 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 63.

    Arnold, C., Matthews, L. J. & Nunn, C. L. The 10kTrees website: A new online resource for primate phylogeny. Evol. Anthropol. 19, 114–118 (2010).

    Article 

    Google Scholar 

  • 64.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org/ (2020).

  • 65.

    RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL https://www.rstudio.com/.


  • Source: Ecology - nature.com

    Arlene Fiore appointed first Stone Professor in Earth, Atmospheric and Planetary Sciences

    Asegun Henry has a big idea for tackling climate change: Store up the sun