Caro, T. The adaptive significance of coloration in mammals. Bioscience 55, 125 (2005).
Google Scholar
Caro, T. The colours of extant mammals. Semin. Cell Dev. Biol. 24, 542–552 (2013).
Google Scholar
Schaller, G. B., Jinchu, H., Wenshi, P. & Jing, Z. The Giant Pandas of Wolong (University of Chicago Press, 1985). https://doi.org/10.1086/414647.
Google Scholar
Schaller, G. B. The Last Panda (University of Chicago Press, 1994).
Morris, R. & Morris, D. Men and Pandas (McGraw-Hill Book Company, 1966).
Morris, R. & Morris, D. The Giant Panda (Penguin Books, 1982).
Lazell, J. D. J. Color Patterns of the ‘Giant’ Bear (Ailuropoda melanoleuca) and the True Panda (Ailurus fulgens) (Mississippi Wildlife Federation, 1974).
Cott, H. B. Adaptive Coloration in Animals (Methuen & Co., Ltd., 1940).
Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315–352 (1990).
Google Scholar
Stevens, M. & Merilaita, S. Animal camouflage: Current issues and new perspectives. Philos. Trans. R. Soc. B Biol. Sci. 364, 423–427 (2009).
Google Scholar
Caro, T., Walker, H., Rossman, Z., Hendrix, M. & Stankowich, T. Why is the giant panda black and white?. Behav. Ecol. 28, 657–667 (2017).
Google Scholar
Endler, J. A. The color of light in forests and its implications. Ecol. Monogr. 63, 1–27 (1993).
Google Scholar
Merilaita, S. Crypsis through disruptive coloration in an isopod. Proc. R. Soc. B Biol. Sci. 265, 1059–1064 (1998).
Google Scholar
Cuthill, I. C. et al. Disruptive coloration and background pattern matching. Nature 434, 72–74 (2005).
Google Scholar
Stevens, M. & Merilaita, S. Defining disruptive coloration and distinguishing its functions. Philos. Trans. R. Soc. B Biol. Sci. 364, 481–488 (2009).
Google Scholar
Ruxton, G., Allen, W., Sherratt, T. & Speed, M. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry (Oxford University Press, 2019).
Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—A free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).
Google Scholar
van den Berg, C. P., Troscianko, J., Endler, J. A., Marshall, N. J. & Cheney, K. L. Quantitative colour pattern analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods Ecol. Evol. 11, 316–332 (2020).
Google Scholar
Troscianko, J., Skelhorn, J. & Stevens, M. Quantifying camouflage: How to predict detectability from appearance. BMC Evol. Biol. 17, 7 (2017).
Google Scholar
Caves, E. M. & Johnsen, S. AcuityView: An r package for portraying the effects of visual acuity on scenes observed by an animal. Methods Ecol. Evol. 9, 793–797 (2018).
Google Scholar
Marshall, N. J. Communication and camouflage with the same ‘bright’ colours in reef fishes. Philos. Trans. R. Soc. B Biol. Sci. 355, 1243–1248 (2000).
Google Scholar
Barnett, J. B., Cuthill, I. C. & Scott-Samuel, N. E. Distance-dependent aposematism and camouflage in the cinnabar moth caterpillar (Tyria jacobaeae, erebidae). R. Soc. Open Sci. 5, 171396 (2018).
Google Scholar
Barnett, J. B., Cuthill, I. C. & Scott-Samuel, N. E. Distance-dependent pattern blending can camouflage salient aposematic signals. Proc. R. Soc. B Biol. Sci. 284, 20170128 (2017).
Google Scholar
Stoner, C. J., Caro, T. M. & Graham, C. M. Ecological and behavioral correlates of coloration in artiodactyls: Systematic analyses of conventional hypotheses. Behav. Ecol. 14, 823–840 (2003).
Google Scholar
Caro, T., Walker, H., Santana, S. E. & Stankowich, T. The evolution of anterior coloration in carnivorans. Behav. Ecol. Sociobiol. 71, 177 (2017).
Google Scholar
Melin, A. D., Kline, D. W., Hiramatsu, C. & Caro, T. Zebra stripes through the eyes of their predators, zebras, and humans. PLoS ONE 11, e0145679 (2016).
Google Scholar
Land, M. F. & Nilsson, D.-E. Animal Eyes (Oxford University Press, 2012).
Google Scholar
Phillips, G. A. C., How, M. J., Lange, J. E., Marshall, N. J. & Cheney, K. L. Disruptive colouration in reef fish: Does matching the background reduce predation risk?. J. Exp. Biol. 220, 1962–1974 (2017).
Google Scholar
Li, Y. et al. Giant pandas can discriminate the emotions of human facial pictures. Sci. Rep. 7, 1–8 (2017).
Google Scholar
Stevens, M., Párraga, C. A., Cuthill, I. C., Partridge, J. C. & Troscianko, T. S. Using digital photography to study animal coloration. Biol. J. Linn. Soc. 90, 211–237 (2007).
Google Scholar
Lind, O., Milton, I., Andersson, E., Jensen, P. & Roth, L. S. V. High visual acuity revealed in dogs. PLoS ONE 12, 1–12 (2017).
Pasternak, T. & Merigan, W. H. The luminance dependence of spatial vision in the cat. Vis. Res. 21, 1333–1339 (1981).
Google Scholar
Clark, D. L. & Clark, R. A. Neutral point testing of color vision in the domestic cat. Exp. Eye Res. 153, 23–26 (2016).
Google Scholar
Caves, E. M., Brandley, N. C. & Johnsen, S. Visual acuity and the evolution of signals. Trends Ecol. Evol. 33, 1–15 (2018).
Google Scholar
Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. B Biol. Sci. 265, 351–358 (1998).
Google Scholar
Nokelainen, O., Brito, J. C., Scott-Samuel, N. E., Valkonen, J. K. & Boratyński, Z. Camouflage accuracy in Sahara-Sahel desert rodents. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13225 (2020).
Google Scholar
Nokelainen, O., Stevens, M. & Caro, T. Colour polymorphism in the coconut crab (Birgus latro). Evol. Ecol. 32, 75–88 (2018).
Google Scholar
Nokelainen, O., Maynes, R., Mynott, S., Price, N. & Stevens, M. Improved camouflage through ontogenetic colour change confers reduced detection risk in shore crabs. Funct. Ecol. https://doi.org/10.1111/1365-2435.13280 (2019).
Google Scholar
Source: Ecology - nature.com