in

The giant panda is cryptic

  • 1.

    Caro, T. The adaptive significance of coloration in mammals. Bioscience 55, 125 (2005).

    Article 

    Google Scholar 

  • 2.

    Caro, T. The colours of extant mammals. Semin. Cell Dev. Biol. 24, 542–552 (2013).

    Article 

    Google Scholar 

  • 3.

    Schaller, G. B., Jinchu, H., Wenshi, P. & Jing, Z. The Giant Pandas of Wolong (University of Chicago Press, 1985). https://doi.org/10.1086/414647.

    Book 

    Google Scholar 

  • 4.

    Schaller, G. B. The Last Panda (University of Chicago Press, 1994).

    Google Scholar 

  • 5.

    Morris, R. & Morris, D. Men and Pandas (McGraw-Hill Book Company, 1966).

    Google Scholar 

  • 6.

    Morris, R. & Morris, D. The Giant Panda (Penguin Books, 1982).

    Google Scholar 

  • 7.

    Lazell, J. D. J. Color Patterns of the ‘Giant’ Bear (Ailuropoda melanoleuca) and the True Panda (Ailurus fulgens) (Mississippi Wildlife Federation, 1974).

    Google Scholar 

  • 8.

    Cott, H. B. Adaptive Coloration in Animals (Methuen & Co., Ltd., 1940).

    Google Scholar 

  • 9.

    Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315–352 (1990).

    Article 

    Google Scholar 

  • 10.

    Stevens, M. & Merilaita, S. Animal camouflage: Current issues and new perspectives. Philos. Trans. R. Soc. B Biol. Sci. 364, 423–427 (2009).

    Article 

    Google Scholar 

  • 11.

    Caro, T., Walker, H., Rossman, Z., Hendrix, M. & Stankowich, T. Why is the giant panda black and white?. Behav. Ecol. 28, 657–667 (2017).

    Article 

    Google Scholar 

  • 12.

    Endler, J. A. The color of light in forests and its implications. Ecol. Monogr. 63, 1–27 (1993).

    Article 

    Google Scholar 

  • 13.

    Merilaita, S. Crypsis through disruptive coloration in an isopod. Proc. R. Soc. B Biol. Sci. 265, 1059–1064 (1998).

    Article 

    Google Scholar 

  • 14.

    Cuthill, I. C. et al. Disruptive coloration and background pattern matching. Nature 434, 72–74 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Stevens, M. & Merilaita, S. Defining disruptive coloration and distinguishing its functions. Philos. Trans. R. Soc. B Biol. Sci. 364, 481–488 (2009).

    Article 

    Google Scholar 

  • 16.

    Ruxton, G., Allen, W., Sherratt, T. & Speed, M. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry (Oxford University Press, 2019).

    Google Scholar 

  • 17.

    Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—A free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).

    Article 

    Google Scholar 

  • 18.

    van den Berg, C. P., Troscianko, J., Endler, J. A., Marshall, N. J. & Cheney, K. L. Quantitative colour pattern analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods Ecol. Evol. 11, 316–332 (2020).

    Article 

    Google Scholar 

  • 19.

    Troscianko, J., Skelhorn, J. & Stevens, M. Quantifying camouflage: How to predict detectability from appearance. BMC Evol. Biol. 17, 7 (2017).

    Article 

    Google Scholar 

  • 20.

    Caves, E. M. & Johnsen, S. AcuityView: An r package for portraying the effects of visual acuity on scenes observed by an animal. Methods Ecol. Evol. 9, 793–797 (2018).

    Article 

    Google Scholar 

  • 21.

    Marshall, N. J. Communication and camouflage with the same ‘bright’ colours in reef fishes. Philos. Trans. R. Soc. B Biol. Sci. 355, 1243–1248 (2000).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Barnett, J. B., Cuthill, I. C. & Scott-Samuel, N. E. Distance-dependent aposematism and camouflage in the cinnabar moth caterpillar (Tyria jacobaeae, erebidae). R. Soc. Open Sci. 5, 171396 (2018).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Barnett, J. B., Cuthill, I. C. & Scott-Samuel, N. E. Distance-dependent pattern blending can camouflage salient aposematic signals. Proc. R. Soc. B Biol. Sci. 284, 20170128 (2017).

    Article 

    Google Scholar 

  • 24.

    Stoner, C. J., Caro, T. M. & Graham, C. M. Ecological and behavioral correlates of coloration in artiodactyls: Systematic analyses of conventional hypotheses. Behav. Ecol. 14, 823–840 (2003).

    Article 

    Google Scholar 

  • 25.

    Caro, T., Walker, H., Santana, S. E. & Stankowich, T. The evolution of anterior coloration in carnivorans. Behav. Ecol. Sociobiol. 71, 177 (2017).

    Article 

    Google Scholar 

  • 26.

    Melin, A. D., Kline, D. W., Hiramatsu, C. & Caro, T. Zebra stripes through the eyes of their predators, zebras, and humans. PLoS ONE 11, e0145679 (2016).

    Article 

    Google Scholar 

  • 27.

    Land, M. F. & Nilsson, D.-E. Animal Eyes (Oxford University Press, 2012).

    Book 

    Google Scholar 

  • 28.

    Phillips, G. A. C., How, M. J., Lange, J. E., Marshall, N. J. & Cheney, K. L. Disruptive colouration in reef fish: Does matching the background reduce predation risk?. J. Exp. Biol. 220, 1962–1974 (2017).

    Article 

    Google Scholar 

  • 29.

    Li, Y. et al. Giant pandas can discriminate the emotions of human facial pictures. Sci. Rep. 7, 1–8 (2017).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Stevens, M., Párraga, C. A., Cuthill, I. C., Partridge, J. C. & Troscianko, T. S. Using digital photography to study animal coloration. Biol. J. Linn. Soc. 90, 211–237 (2007).

    Article 

    Google Scholar 

  • 31.

    Lind, O., Milton, I., Andersson, E., Jensen, P. & Roth, L. S. V. High visual acuity revealed in dogs. PLoS ONE 12, 1–12 (2017).

    Google Scholar 

  • 32.

    Pasternak, T. & Merigan, W. H. The luminance dependence of spatial vision in the cat. Vis. Res. 21, 1333–1339 (1981).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Clark, D. L. & Clark, R. A. Neutral point testing of color vision in the domestic cat. Exp. Eye Res. 153, 23–26 (2016).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Caves, E. M., Brandley, N. C. & Johnsen, S. Visual acuity and the evolution of signals. Trends Ecol. Evol. 33, 1–15 (2018).

    Article 

    Google Scholar 

  • 35.

    Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. B Biol. Sci. 265, 351–358 (1998).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Nokelainen, O., Brito, J. C., Scott-Samuel, N. E., Valkonen, J. K. & Boratyński, Z. Camouflage accuracy in Sahara-Sahel desert rodents. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13225 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 37.

    Nokelainen, O., Stevens, M. & Caro, T. Colour polymorphism in the coconut crab (Birgus latro). Evol. Ecol. 32, 75–88 (2018).

    Article 

    Google Scholar 

  • 38.

    Nokelainen, O., Maynes, R., Mynott, S., Price, N. & Stevens, M. Improved camouflage through ontogenetic colour change confers reduced detection risk in shore crabs. Funct. Ecol. https://doi.org/10.1111/1365-2435.13280 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Global potential for harvesting drinking water from air using solar energy

    Post-fire insect fauna explored by crown fermental traps in forests of the European Russia