in

The Holocene influence on the future evolution of the Venice Lagoon tidal marshes

  • 1.

    D’Alpaos, A., Da Lio, C. & Marani, M. Biogeomorphology of tidal landforms: physical and biological processes shaping the tidal landscape. Ecohydrology 5, 550–562 (2012).

    Article 

    Google Scholar 

  • 2.

    Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Response of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).

    Article 

    Google Scholar 

  • 3.

    Murray, A. B., Knaapen, M. A. F., Tal, M. & Kirwan, M. L. Biomorphodynamics: physical-biological feedbacks that shape landscapes. Water Resour. Res. 44, W11301 (2008).

  • 4.

    Mudd, S. M., Howell, S. M. & Morris, J. T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar. Coast. Shelf S. 82, 377 – 389 (2009).

    Article 
    CAS 

    Google Scholar 

  • 5.

    Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Törnqvist, T. E. et al. Mississippi delta subsidence primarily caused by compaction of Holocene strata. Nat. Geosci. 1, 173–176 (2008).

    Article 
    CAS 

    Google Scholar 

  • 7.

    Global Wetland Outlook: State of the World’s Wetlands and their Services to People. Technical Report (Ramsar Convention on Wetlands, Gland, Switzerland: Ramsar Convention Secretariat, 2018).

  • 8.

    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article 

    Google Scholar 

  • 9.

    Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15, 257–265 (2017).

    Article 

    Google Scholar 

  • 10.

    Sapkota, Y. & White, J. R. Carbon offset market methodologies applicable for coastal wetland restoration and conservation in the united states: a review. Sci. Total Environ. 701, 134497 (2020).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Brain, M. J. Past, present and future perspectives of sediment compaction as a driver of relative sea level and coastal change. Current Clim. Change Rep. 2, 75–85 (2016).

    Article 

    Google Scholar 

  • 12.

    Marani, M., D’Alpaos, A., Lanzoni, S. & Santalucia, M. Understanding and predicting wave erosion of marsh edges. Giophys. Res. Lett. 38, L21401 (2011).

  • 13.

    Houser, C. Relative importance of vessel-generated and wind waves to salt marsh erosion in a restricted fetch environment. J. Coast. Res. 26, 230–240 (2010).

  • 14.

    Anderson, F. E. Effect of wave-wash from personal watercraft on salt marsh channels. J. Coast. Res. 37, 33–49 (2002).

  • 15.

    Day, J. et al. Sustainability of mediterranean deltaic and lagoon wetlands with sea-level rise: the importance of river input. Estuaries Coasts 34, 483–493 (2011).

  • 16.

    Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Schuerch, M., Spencer, T. & Temmerman, S. e. a. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).

  • 18.

    Tosi, L., Da Lio, C., Teatini, P. & Strozzi, T. Land subsidence in coastal environments: knowledge advance in the venice coastland by TerraSAR-X PSI. Remote Sens. 10, 1191 (2018).

    Article 

    Google Scholar 

  • 19.

    Strozzi, T., Teatini, P., Tosi, L., Wegmüller, U. & Werner, C. Land subsidence of natural transitional environments by satellite radar interferometry on artificial reflectors. J. Geophys. Res. Earth Surface 118, 1177–1191 (2013).

    Article 

    Google Scholar 

  • 20.

    Mariotti, G. Beyond marsh drowning: the many faces of marsh loss (and gain). Adv. Water Resour. 144, 103710 (2020).

    Article 

    Google Scholar 

  • 21.

    Jankowski, K. L., Törnqvist, T. E. & Fernandes, A. M. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. 8, 14792 (2017).

    CAS 
    Article 

    Google Scholar 

  • 22.

    D’Alpaos, A. & Marani, M. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Adv. Water Resour. 93, 265–275 (2016).

    Article 

    Google Scholar 

  • 23.

    Fagherazzi, S. et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophys. 50, RG1002 (2012).

  • 24.

    Allen, J. R. L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Sci. Rev. 19, 1155–1231 (2000).

    Article 

    Google Scholar 

  • 25.

    Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A. The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. J. Geophys. Res. Earth Surface 115, 1–15 (2010).

    Article 

    Google Scholar 

  • 26.

    Da Lio, C., D’Alpaos, A. & Marani, M. The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments. Philos. Trans. A. Math. Phys. Eng. Sci. 371, 20120367 (2013).

    Google Scholar 

  • 27.

    Allen, J. R. L. Geological impact on coastal wetland landscapes: some general effects of sediment autocompaction in the Holocene of northwest Europe. Holocene 9, 1–12 (1999).

    Article 

    Google Scholar 

  • 28.

    Callaway, J. C., DeLaune, R. D. & Jr., W. H. P. Sediment accretion rates from four coastal wetlands along the gulf of Mexico. J. Coast. Res. 13, 181–191 http://www.jstor.org/stable/4298603 (1997).

  • 29.

    Rybczyk, J. M., Callaway, J. & Jr, J. D. A relative elevation model for a subsiding coastal forested wetland receiving wastewater effluent. Ecol. Model. 112, 23–44 https://doi.org/10.1016/S0304-3800(98)00125-2 (1998).

  • 30.

    Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2, 40–58 (2021).

    Article 

    Google Scholar 

  • 31.

    Brain, M. J. et al. Exploring mechanisms of compaction in salt-marsh sediments using Common Era relative sea-level reconstructions. Quat. Sci. Rev. 167, 96–111 (2017).

  • 32.

    Zoccarato, C. & Teatini, P. Numerical simulations of Holocene salt-marsh dynamics under the hypothesis of large soil deformations. Ad. Water Res. 110, 107–119 (2017).

    Article 

    Google Scholar 

  • 33.

    Da Lio, C., Teatini, P., Strozzi, T. & Tosi, L. Understanding land subsidence in salt marshes of the Venice Lagoon from SAR interferometry and ground-based investigations. Remote Sens. Environ. 205, 56–70 (2018).

    Google Scholar 

  • 34.

    Cahoon, D. & Turner, R. E. Accretion and canal impacts in a rapidly subsiding wetland ii. feldspar marker horizon technique. Estuaries 12, 260–268 (1989).

  • 35.

    Cahoon, D. R. & Reed, D. J. W., D. J. Estimating shallow subsidence in microtidal salt marshes of the southeastern united states: Kaye and barghoorn revisited. Marine Geol. 128, 1–9 (1995).

  • 36.

    Cahoon, D. R. et al. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. J. Sediment. Res. 72, 734–739 (2002).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Teatini, P. et al. Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sens. Environ. 98, 403–413 (2005).

    Article 

    Google Scholar 

  • 38.

    Tosi, L. et al. Ground surface dynamics in the northern adriatic coastland over the last two decades. Rendiconti Lincei 21, 115–129 (2010).

    Article 

    Google Scholar 

  • 39.

    Karegar, M., Dixon, T. & Malservisi, R. A three-dimensional surface velocity field for the mississippi delta: implications for coastal restoration and flood potential. Geology 43, 519–522 (2015).

  • 40.

    Brain, M. J. et al. Modelling the effects of sediment compaction on salt marsh reconstructions of recent sea-level rise. Earth Planet. Sci. Lett. 345–348, 180–193 (2012).

    Article 
    CAS 

    Google Scholar 

  • 41.

    Tosi, L., Teatini, P., Carbognin, L. & Brancolini, G. Using high resolution data to reveal depth-dependent mechanisms that drive land subsidence: The Venice coast, Italy. Tectonophysics 474, 271–284 (2009).

    Article 

    Google Scholar 

  • 42.

    Tosi, L. et al. Note illustrative della carta geologica d’italia alla scala 1: 50.000 foglio 128 venezia. APAT – Dipartimento Difesa del Suolo, Servizio Geologico d’Italia (2007).

  • 43.

    Rizzetto, F. & Tosi, L. Aptitude of modern salt marshes to counteract relative sea-level rise, Venice Lagoon (Italy). Geology 39, 755–758 (2011).

    Article 

    Google Scholar 

  • 44.

    Cola, S., Sanavia, L., Simonini, P. & Schrefler, B. A. Coupled thermohydromechanical analysis of Venice lagoon salt marshes. Water Resour. Res. 44, 1–16 (2008).

    Article 

    Google Scholar 

  • 45.

    Carminati, E. & Di Donato, G. Separating natural and anthropogenic vertical movements in fast subsiding areas: the po plain (n. italy) case. Geophys. Res. Lett. 26, 2291–2294 (1999).

    Article 

    Google Scholar 

  • 46.

    Carbognin, L., Teatini, P. & Tosi, L. The impact of relative sea-level rise on the Northern Adriatic Sea coast, Italy. WIT Trans. Ecol. Environ. 127, 137–148 (2009).

  • 47.

    Tsimplis, M. et al. Recent developments in understanding sea level rise at the Adriatic coasts. Phys. Chem. Earth Parts A/B/C 40-41, 59 – 71 (2012).

    Article 

    Google Scholar 

  • 48.

    Antonioli, F. et al. Sea-level rise and potential drowning of the italian coastal plains: flooding risk scenarios for 2100. Quat. Sci. Rev. 158, 29 – 43 (2017).

    Article 

    Google Scholar 

  • 49.

    Zanchettin, D. et al. Review article: Sea-level rise in venice: historic and future trends. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 1–56 (2020).

    Google Scholar 

  • 50.

    Oppenheimer, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegriá, A., Nicolai, M., Okem, A., Petzold, J., Rama, B. & Weyer, N. M.) Ch. 4 (IPCC, 2019).

  • 51.

    Tsimplis, M. N. & Rixen, M. Sea level in the mediterranean sea: the contribution of temperature and salinity changes. Geophys. Res. Lett. 29, 51–1–51–4 (2002).

    Article 

    Google Scholar 

  • 52.

    Thiéblemont, R., Le Cozannet, G., Toimil, A., Meyssignac, B. & Losada, I. Likely and high-end impacts of regional sea-level rise on the shoreline change of european sandy coasts under a high greenhouse gas emissions scenario. Water 11, 2607 (2019).

    Article 
    CAS 

    Google Scholar 

  • 53.

    Zoccarato, C., Da Lio, C., Tosi, L. & Teatini, P. A coupled biomorpho-geomechanical model of tidal marsh evolution. Water Resour. Res. 55, 8330–8349 (2019).

    Article 

    Google Scholar 

  • 54.

    Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice Lagoon. Geophys. Res. Lett. 34, 1–5 (2007).

    Article 

    Google Scholar 

  • 55.

    Ferrarin, C. et al. Assessing hydrological effects of human interventions on coastal systems: numerical applications to the Venice Lagoon. Hydrol. Earth Syst. Sci. 17, 1733–1748 (2013).

    Article 

    Google Scholar 

  • 56.

    Umgiesser, G. The impact of operating the mobile barriers in venice (mose) under climate change. J. Nat. Conserv. 54, 125783 (2020).

    Article 

    Google Scholar 

  • 57.

    Roner, M. et al. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: inferences from the venice lagoon, italy. Ad. Water Res. 93, 276–287 (2016).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Long, A. J., Waller, M. P. & Stupples, P. Driving mechanisms of coastal change: peat compaction and the destruction of late Holocene coastal wetlands. Mar. Geol. 225, 63–84 (2006).

    Article 

    Google Scholar 

  • 59.

    Karegar, M. A., Larson, K. M., Kusche, J. & Dixon, T. H. Novel quantification of shallow sediment compaction by gps interferometric reflectometry and implications for flood susceptibility. Geophys. Res. Lett. 47, e2020GL087807 (2020).

    Google Scholar 

  • 60.

    Zoccarato, C., Minderhoud, P. S. J. & Teatini, P. The role of sedimentation and natural compaction in a prograding delta: insights from the mega mekong delta, vietnam. Sci. Rep. 8, 11437 (2018).

  • 61.

    Brain, M. J., Long, A. J., Petley, D. N., Horton, B. P. & Allison, R. J. Compression behaviour of minerogenic low energy intertidal sediments. Sed. Geol. 233, 28–41 (2011).

    Article 

    Google Scholar 

  • 62.

    Guimond, J. A., Yu, X., Seyfferth, A. L. & Michael, H. A. Using hydrological-biogeochemical linkages to elucidate carbon dynamics in coastal marshes subject to relative sea-level rise. Water Resour. Res. 56, e2019WR026302 (2020).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Teatini, P. et al. Characterizing marshland compressibility by an in-situ loading test: design and set-up of an experiment in the Venice Lagoon. Proc. IAHS 382, 345–351 (2020).

  • 64.

    Mazzia, A., Ferronato, M., Teatini, P. & Zoccarato, C. Virtual element method for the numerical simulation of long-term dynamics of transitional environments. J. Comput. Phys. 407, 109235 (2020).

    Article 

    Google Scholar 

  • 65.

    Gambolati, G. Equation for one-dimensional vertical flow of groundwater. 1. The rigorous theory. Water Resour. Res. 9, 1022–1028 (1973).

    Article 

    Google Scholar 

  • 66.

    Gambolati, G. Equation for one-dimensional vertical flow of groundwater. 2. Validity range of the diffusion equation. Water Resour. Res. 9, 1385–1395 (1973).

    Article 

    Google Scholar 

  • 67.

    Gambolati, G., Giunta, G. & Teatini, P. Numerical modeling of natural land subsidence over sedimentary basins undergoing large compaction. In Gambolati, G. (ed.) CENAS – Coastline evolution of the Upper Adriatic Sea due to sea level rise and natural and anthropogenic land subsidence, no. 28 in Water Science and Technology Library, 77–102 (Klwer Acedemic Publ., 1998).


  • Source: Ecology - nature.com

    Invitations to powerful climate action at MIT Better World (Sustainability)

    Climate solutions depend on technology, policy, and businesses working together