D’Alpaos, A., Da Lio, C. & Marani, M. Biogeomorphology of tidal landforms: physical and biological processes shaping the tidal landscape. Ecohydrology 5, 550–562 (2012).
Google Scholar
Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Response of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).
Google Scholar
Murray, A. B., Knaapen, M. A. F., Tal, M. & Kirwan, M. L. Biomorphodynamics: physical-biological feedbacks that shape landscapes. Water Resour. Res. 44, W11301 (2008).
Mudd, S. M., Howell, S. M. & Morris, J. T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar. Coast. Shelf S. 82, 377 – 389 (2009).
Google Scholar
Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).
Google Scholar
Törnqvist, T. E. et al. Mississippi delta subsidence primarily caused by compaction of Holocene strata. Nat. Geosci. 1, 173–176 (2008).
Google Scholar
Global Wetland Outlook: State of the World’s Wetlands and their Services to People. Technical Report (Ramsar Convention on Wetlands, Gland, Switzerland: Ramsar Convention Secretariat, 2018).
Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).
Google Scholar
Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15, 257–265 (2017).
Google Scholar
Sapkota, Y. & White, J. R. Carbon offset market methodologies applicable for coastal wetland restoration and conservation in the united states: a review. Sci. Total Environ. 701, 134497 (2020).
Google Scholar
Brain, M. J. Past, present and future perspectives of sediment compaction as a driver of relative sea level and coastal change. Current Clim. Change Rep. 2, 75–85 (2016).
Google Scholar
Marani, M., D’Alpaos, A., Lanzoni, S. & Santalucia, M. Understanding and predicting wave erosion of marsh edges. Giophys. Res. Lett. 38, L21401 (2011).
Houser, C. Relative importance of vessel-generated and wind waves to salt marsh erosion in a restricted fetch environment. J. Coast. Res. 26, 230–240 (2010).
Anderson, F. E. Effect of wave-wash from personal watercraft on salt marsh channels. J. Coast. Res. 37, 33–49 (2002).
Day, J. et al. Sustainability of mediterranean deltaic and lagoon wetlands with sea-level rise: the importance of river input. Estuaries Coasts 34, 483–493 (2011).
Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010).
Google Scholar
Schuerch, M., Spencer, T. & Temmerman, S. e. a. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).
Tosi, L., Da Lio, C., Teatini, P. & Strozzi, T. Land subsidence in coastal environments: knowledge advance in the venice coastland by TerraSAR-X PSI. Remote Sens. 10, 1191 (2018).
Google Scholar
Strozzi, T., Teatini, P., Tosi, L., Wegmüller, U. & Werner, C. Land subsidence of natural transitional environments by satellite radar interferometry on artificial reflectors. J. Geophys. Res. Earth Surface 118, 1177–1191 (2013).
Google Scholar
Mariotti, G. Beyond marsh drowning: the many faces of marsh loss (and gain). Adv. Water Resour. 144, 103710 (2020).
Google Scholar
Jankowski, K. L., Törnqvist, T. E. & Fernandes, A. M. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. 8, 14792 (2017).
Google Scholar
D’Alpaos, A. & Marani, M. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Adv. Water Resour. 93, 265–275 (2016).
Google Scholar
Fagherazzi, S. et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophys. 50, RG1002 (2012).
Allen, J. R. L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Sci. Rev. 19, 1155–1231 (2000).
Google Scholar
Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A. The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. J. Geophys. Res. Earth Surface 115, 1–15 (2010).
Google Scholar
Da Lio, C., D’Alpaos, A. & Marani, M. The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments. Philos. Trans. A. Math. Phys. Eng. Sci. 371, 20120367 (2013).
Allen, J. R. L. Geological impact on coastal wetland landscapes: some general effects of sediment autocompaction in the Holocene of northwest Europe. Holocene 9, 1–12 (1999).
Google Scholar
Callaway, J. C., DeLaune, R. D. & Jr., W. H. P. Sediment accretion rates from four coastal wetlands along the gulf of Mexico. J. Coast. Res. 13, 181–191 http://www.jstor.org/stable/4298603 (1997).
Rybczyk, J. M., Callaway, J. & Jr, J. D. A relative elevation model for a subsiding coastal forested wetland receiving wastewater effluent. Ecol. Model. 112, 23–44 https://doi.org/10.1016/S0304-3800(98)00125-2 (1998).
Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2, 40–58 (2021).
Google Scholar
Brain, M. J. et al. Exploring mechanisms of compaction in salt-marsh sediments using Common Era relative sea-level reconstructions. Quat. Sci. Rev. 167, 96–111 (2017).
Zoccarato, C. & Teatini, P. Numerical simulations of Holocene salt-marsh dynamics under the hypothesis of large soil deformations. Ad. Water Res. 110, 107–119 (2017).
Google Scholar
Da Lio, C., Teatini, P., Strozzi, T. & Tosi, L. Understanding land subsidence in salt marshes of the Venice Lagoon from SAR interferometry and ground-based investigations. Remote Sens. Environ. 205, 56–70 (2018).
Cahoon, D. & Turner, R. E. Accretion and canal impacts in a rapidly subsiding wetland ii. feldspar marker horizon technique. Estuaries 12, 260–268 (1989).
Cahoon, D. R. & Reed, D. J. W., D. J. Estimating shallow subsidence in microtidal salt marshes of the southeastern united states: Kaye and barghoorn revisited. Marine Geol. 128, 1–9 (1995).
Cahoon, D. R. et al. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. J. Sediment. Res. 72, 734–739 (2002).
Google Scholar
Teatini, P. et al. Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sens. Environ. 98, 403–413 (2005).
Google Scholar
Tosi, L. et al. Ground surface dynamics in the northern adriatic coastland over the last two decades. Rendiconti Lincei 21, 115–129 (2010).
Google Scholar
Karegar, M., Dixon, T. & Malservisi, R. A three-dimensional surface velocity field for the mississippi delta: implications for coastal restoration and flood potential. Geology 43, 519–522 (2015).
Brain, M. J. et al. Modelling the effects of sediment compaction on salt marsh reconstructions of recent sea-level rise. Earth Planet. Sci. Lett. 345–348, 180–193 (2012).
Google Scholar
Tosi, L., Teatini, P., Carbognin, L. & Brancolini, G. Using high resolution data to reveal depth-dependent mechanisms that drive land subsidence: The Venice coast, Italy. Tectonophysics 474, 271–284 (2009).
Google Scholar
Tosi, L. et al. Note illustrative della carta geologica d’italia alla scala 1: 50.000 foglio 128 venezia. APAT – Dipartimento Difesa del Suolo, Servizio Geologico d’Italia (2007).
Rizzetto, F. & Tosi, L. Aptitude of modern salt marshes to counteract relative sea-level rise, Venice Lagoon (Italy). Geology 39, 755–758 (2011).
Google Scholar
Cola, S., Sanavia, L., Simonini, P. & Schrefler, B. A. Coupled thermohydromechanical analysis of Venice lagoon salt marshes. Water Resour. Res. 44, 1–16 (2008).
Google Scholar
Carminati, E. & Di Donato, G. Separating natural and anthropogenic vertical movements in fast subsiding areas: the po plain (n. italy) case. Geophys. Res. Lett. 26, 2291–2294 (1999).
Google Scholar
Carbognin, L., Teatini, P. & Tosi, L. The impact of relative sea-level rise on the Northern Adriatic Sea coast, Italy. WIT Trans. Ecol. Environ. 127, 137–148 (2009).
Tsimplis, M. et al. Recent developments in understanding sea level rise at the Adriatic coasts. Phys. Chem. Earth Parts A/B/C 40-41, 59 – 71 (2012).
Google Scholar
Antonioli, F. et al. Sea-level rise and potential drowning of the italian coastal plains: flooding risk scenarios for 2100. Quat. Sci. Rev. 158, 29 – 43 (2017).
Google Scholar
Zanchettin, D. et al. Review article: Sea-level rise in venice: historic and future trends. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 1–56 (2020).
Oppenheimer, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegriá, A., Nicolai, M., Okem, A., Petzold, J., Rama, B. & Weyer, N. M.) Ch. 4 (IPCC, 2019).
Tsimplis, M. N. & Rixen, M. Sea level in the mediterranean sea: the contribution of temperature and salinity changes. Geophys. Res. Lett. 29, 51–1–51–4 (2002).
Google Scholar
Thiéblemont, R., Le Cozannet, G., Toimil, A., Meyssignac, B. & Losada, I. Likely and high-end impacts of regional sea-level rise on the shoreline change of european sandy coasts under a high greenhouse gas emissions scenario. Water 11, 2607 (2019).
Google Scholar
Zoccarato, C., Da Lio, C., Tosi, L. & Teatini, P. A coupled biomorpho-geomechanical model of tidal marsh evolution. Water Resour. Res. 55, 8330–8349 (2019).
Google Scholar
Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice Lagoon. Geophys. Res. Lett. 34, 1–5 (2007).
Google Scholar
Ferrarin, C. et al. Assessing hydrological effects of human interventions on coastal systems: numerical applications to the Venice Lagoon. Hydrol. Earth Syst. Sci. 17, 1733–1748 (2013).
Google Scholar
Umgiesser, G. The impact of operating the mobile barriers in venice (mose) under climate change. J. Nat. Conserv. 54, 125783 (2020).
Google Scholar
Roner, M. et al. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: inferences from the venice lagoon, italy. Ad. Water Res. 93, 276–287 (2016).
Google Scholar
Long, A. J., Waller, M. P. & Stupples, P. Driving mechanisms of coastal change: peat compaction and the destruction of late Holocene coastal wetlands. Mar. Geol. 225, 63–84 (2006).
Google Scholar
Karegar, M. A., Larson, K. M., Kusche, J. & Dixon, T. H. Novel quantification of shallow sediment compaction by gps interferometric reflectometry and implications for flood susceptibility. Geophys. Res. Lett. 47, e2020GL087807 (2020).
Zoccarato, C., Minderhoud, P. S. J. & Teatini, P. The role of sedimentation and natural compaction in a prograding delta: insights from the mega mekong delta, vietnam. Sci. Rep. 8, 11437 (2018).
Brain, M. J., Long, A. J., Petley, D. N., Horton, B. P. & Allison, R. J. Compression behaviour of minerogenic low energy intertidal sediments. Sed. Geol. 233, 28–41 (2011).
Google Scholar
Guimond, J. A., Yu, X., Seyfferth, A. L. & Michael, H. A. Using hydrological-biogeochemical linkages to elucidate carbon dynamics in coastal marshes subject to relative sea-level rise. Water Resour. Res. 56, e2019WR026302 (2020).
Google Scholar
Teatini, P. et al. Characterizing marshland compressibility by an in-situ loading test: design and set-up of an experiment in the Venice Lagoon. Proc. IAHS 382, 345–351 (2020).
Mazzia, A., Ferronato, M., Teatini, P. & Zoccarato, C. Virtual element method for the numerical simulation of long-term dynamics of transitional environments. J. Comput. Phys. 407, 109235 (2020).
Google Scholar
Gambolati, G. Equation for one-dimensional vertical flow of groundwater. 1. The rigorous theory. Water Resour. Res. 9, 1022–1028 (1973).
Google Scholar
Gambolati, G. Equation for one-dimensional vertical flow of groundwater. 2. Validity range of the diffusion equation. Water Resour. Res. 9, 1385–1395 (1973).
Google Scholar
Gambolati, G., Giunta, G. & Teatini, P. Numerical modeling of natural land subsidence over sedimentary basins undergoing large compaction. In Gambolati, G. (ed.) CENAS – Coastline evolution of the Upper Adriatic Sea due to sea level rise and natural and anthropogenic land subsidence, no. 28 in Water Science and Technology Library, 77–102 (Klwer Acedemic Publ., 1998).
Source: Ecology - nature.com