in

The importance of environmental microbes for Drosophila melanogaster during seasonal macronutrient variability

  • 1.

    Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U.S.A. 101, 15718–15723 (2004).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 2.

    LeBlanc, J. G. et al. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 24, 160–168 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Huang, J. & Douglas, A. E. Consumption of dietary sugar by gut bacteria determines Drosophila lipid content. Biol. Lett. 11, 12–15 (2015).

    Article 
    CAS 

    Google Scholar 

  • 4.

    Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403–414 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Chandler, J. A., Lang, J., Bhatnagar, S., Eisen, J. A. & Kopp, A. Bacterial communities of diverse Drosophila species: Ecological context of a host-microbe model system. PLoS Genet. 7, e1002272 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Bing, X., Gerlach, J., Loeb, G. & Buchon, N. Nutrient-dependent impact of microbes on Drosophila suzukii development. MBio 9, e02199 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Wong, A. C. N., Chaston, J. M. & Douglas, A. E. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J. 7, 1922–1932 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Chandler, J. A., James, P. M., Jospin, G. & Lang, J. M. The bacterial communities of Drosophila suzukii collected from undamaged cherries. PeerJ 2, e474 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Kapun, M. et al. Genomic analysis of European Drosophila malanogaster populations revels longitudinal structure, continent-wide selection, and previously unknown DNA viruses. Mol. Biol. Evol. 37, 2661 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Morais, P. B., Martins, M. B., Klaczko, L. B., Mendonca-Hagler, L. C. & Hagler, A. N. Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila spp. Appl. Environ. Microbiol. 61, 4251–4257 (1995).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Wolda, H. Season fluctuations in rainfall, food and abundance of tropical insects. J. Anim. Ecol. 47, 369–381 (1978).

    Article 

    Google Scholar 

  • 12.

    Simpson, S. J., Sibly, R. M., Lee, K. P., Behmer, S. T. & Raubenheimer, D. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 68, 1299–1311 (2004).

    Article 

    Google Scholar 

  • 13.

    Lee, K. P. et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. U.S.A. 105, 2498–2503 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Lee, K. P., Kim, J. S. & Min, K. J. Sexual dimorphism in nutrient intake and life span is mediated by mating in Drosophila melanogaster. Anim. Behav. 86, 987–992 (2013).

    Article 

    Google Scholar 

  • 15.

    Wong, A. C. N., Dobson, A. J. & Douglas, A. E. Gut microbiota dictates the metabolic response of Drosophila to diet. J. Exp. Biol. 217, 1894–1901 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Rodrigues, M. A. et al. Drosophila melanogaster larvae make nutritional choices that minimize developmental time. J. Insect Physiol. 81, 69–80 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Davies, L. R., Schou, M. F., Kristensen, T. N. & Loeschcke, V. Linking developmental diet to adult foraging choice in Drosophila melanogaster. J. Exp. Biol. 221, 175554 (2018).

    Article 

    Google Scholar 

  • 18

    Keebaugh, E. S., Yamada, R., Obadia, B., Ludington, W. B. & Ja, W. W. Microbial quantity impacts Drosophila nutrition, development, and lifespan. iScience 4, 247–259 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19

    Morimoto, J., Simpson, S. J. & Ponton, F. Direct and transgenerational effects of male and female gut microbiota in Drosophila melanogaster. Biol. Lett. 13, 20160966 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, 2012).

    Book 

    Google Scholar 

  • 21.

    Wong, A. C. N. et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr. Biol. 27, 2397–2404 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Andersen, L. H., Kristensen, T. N., Loeschcke, V., Toft, S. & Mayntz, D. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J. Insect Physiol. 56, 336–340 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Kutz, T. C., Sgrò, C. M. & Mirth, C. K. Interacting with change: Diet mediates how larvae respond to their thermal environment. Funct. Ecol. 33, 1940–1951 (2019).

    Article 

    Google Scholar 

  • 24.

    Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol. Writing 5, 1–34 (1948).

    Google Scholar 

  • 25.

    Broderick, N. & Lemaitre, B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3, 307–321 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    De Ley, J. Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J. Gen. Microbiol. 24, 31–50 (1961).

    Article 

    Google Scholar 

  • 27

    Ameyama, M. Gluconobacter oxydans subsp. sphaericus, new subspecies isolated from grapes. Int. J. Syst. Bacteriol. 25, 365–370 (1948).

    Article 

    Google Scholar 

  • 28.

    Deppenmeier, U., Hoffmeister, M. & Prust, C. Biochemistry and biotechnological applications of Gluconobacter strains. Appl. Microbiol. Biotechnol. 60, 233–242 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Ryngajłło, M., Kubiak, K., Jędrzejczak-Krzepkowska, M., Jacek, P. & Bielecki, S. Comparative genomics of the Komagataeibacter strains—Efficient bionanocellulose producers. Microbiologyopen 8, 1–25 (2019).

    Article 
    CAS 

    Google Scholar 

  • 30.

    Gilbert, D. G. Dispersal of yeasts and bacteria by Drosophila in a temperate forest. Oecologia 46, 135–137 (1980).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Blum, J. E., Fischer, C. N., Miles, J. & Handelsman, J. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. MBio 4, 1–8 (2013).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Staubach, F., Baines, J. F., Künzel, S., Bik, E. M. & Petrov, D. A. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS ONE 8, e70749 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Wong, A. C. N. et al. The host as the driver of the microbiota in the gut and external environment of Drosophila melanogaster. Appl. Environ. Microbiol. 81, 6232–6240 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Pais, I. S., Valente, R. S., Sporniak, M. & Teixeira, L. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol. 16(7), e2005710 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Buchon, N., Broderick, N. A. & Lemaitre, B. Gut homeostasis in a microbial world: Insights from Drosophila melanogaster. Nat. Rev. Microbiol. 11, 615–626 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Wong, A. C. N., Ng, P. & Douglas, A. E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 13, 1889–1900 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Manteca, A. & Sanchez, J. Streptomyces development in colonies and soils. Appl. Environ. Microbiol. 75, 2920–2924 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Lee, K. P., Raubenheimer, D., Behmer, S. T. & Simpson, S. J. A correlation between macronutrient balancing and insect host-plant range: Evidence from the specialist caterpillar Spodoptera exempta (Walker). J. Insect Physiol. 49, 1161–1171 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Mevi-Schütz, J. & Erhardt, A. Larval nutrition affects female nectar amino acid preference in the map butterfly (Araschnia levana). Ecology 18, 2788–2794 (2003).

    Article 

    Google Scholar 

  • 40.

    Lee, K. P. The interactive effects of protein quality and macronutrient imbalance on nutrient balancing in an insect herbivore. J. Exp. Biol. 210, 3236–3244 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Fanson, B. G., Weldon, C. W., Pérez-Staples, D., Simpson, S. J. & Taylor, P. W. Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni). Aging Cell 8, 514–523 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Spor, A., Koren, O. & Ley, R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279–290 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Faith, J. J., McNulty, N. P., Rey, F. E. & Gordon, J. I. Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333, 101–104 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Ridley, E. V., Wong, A. C. N., Westmiller, S. & Douglas, A. E. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS ONE 7, e36765 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Nguyen, B. et al. Interactions between ecological factors in the developmental environment modulate pupal and adult traits in a polyphagous fly. Ecol. Evol. 9, 6342–6352 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Drew, R. A. I., Courtice, A. C. & Teakle, D. S. Bacteria as a natural source of food for adult fruit flies (Diptera, Tephritidae). Oecologia 60, 279–284 (1983).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48

    Lesperance, D. N. A. & Broderick, N. Gut bacteria mediate nutrient availability in Drosophila diets. Appl. Environ. Microbiol. 59, 211 (2020).

    Google Scholar 

  • 49.

    Kristensen, T. N. et al. Fitness components of Drosophila melanogaster developed on a standard laboratory diet or a typical natural food source. Insect Sci. 23, 771–779 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Harrison, A. P. & Pelczar, M. J. Damage and survival of bacteria during freeze-drying and during storage over a ten-year period. J. Gen. Microbiol. 30, 395–400 (1963).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Rubin, B. E. R. et al. Investigating the impact of storage conditions on microbial community composition in soil samples. PLoS ONE 8, 1–9 (2013).

    Google Scholar 

  • 52.

    Sharon, G. et al. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 107, 20051–20056 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Xu, X., Feng, G., Liu, H. & Li, X. Control of spoilage microorganisms in Soybean milk by nipagin complex esters, nisin, sodium dehydroaceate and heat treatment. IPCBEE 67, 35 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 54.

    Leftwich, P. T., Clarke, N. V. E., Hutchings, M. I. & Chapman, T. Gut microbiomes and reproductive isolation in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 114, 12767–12772 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Leftwich, P. T., Clarke, N. V. E., Hutchings, M. I. & Chapman, T. Reply to Obadia et al.: Effect of methyl paraben on host–microbiota interactions in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 20, E4549–E4550 (2018).

    Article 

    Google Scholar 

  • 56.

    Ward, D. V. et al. Evaluation of 16s rDNA-based community profiling for human microbiome research. PLoS ONE 7, e39315 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 57.

    Caporaso, J. et al. Ultra-high-throughput microbial community analysis on Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).

    Article 
    CAS 

    Google Scholar 

  • 60.

    Overgaard, J., Kristensen, T. N. & Sørensen, J. G. Validity of thermal ramping assays used to assess thermal tolerance in arthropods. PLoS ONE 7, 1–7 (2012).

    Article 
    CAS 

    Google Scholar 

  • 61.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). Accessed February 2021. https://www.R-project.org/.

  • 62

    RStudio Team. RStudio: Integrated Development for R (RStudio, PBC, 2020).

    Google Scholar 

  • 63

    McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Oksanen, J. et al. vegan: Community Ecology Package. R package 2.5-7 (2019). Accessed October 2019. https://CRAN.R-project.org/package=vegan.

  • 65.

    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, 2016).

    MATH 
    Book 

    Google Scholar 


  • Source: Ecology - nature.com

    Predicting building emissions across the US

    A new method for removing lead from drinking water