in

The importance of termites and fire to dead wood consumption in the longleaf pine ecosystem

[adace-ad id="91168"]
  • 1.

    Cornwell, W. K. et al. Plant traits and wood fates across the globe: Rotted, burned, or consumed?. Glob. Change Biol. 15, 2431–2449 (2009).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. 91, 70–85 (2016).

    Article 

    Google Scholar 

  • 3.

    Rayner, A. D. M. & Boddy, L. Fungal Decomposition of Wood: Its Biology and Ecology 587 (Wiley, 1988).

    Google Scholar 

  • 4.

    Hyde, J. C., Smith, A. M. S., Ottmar, R. D., Alvarado, E. C. & Morgan, P. The combustion of sound and rotten coarse woody debris: A review. Int. J. Wildland Fire 20, 163–174. https://doi.org/10.1071/WF09113 (2011).

    Article 

    Google Scholar 

  • 5.

    Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).

    Article 
    CAS 

    Google Scholar 

  • 6.

    Wu, C. et al. Stronger effects of termites than microbes on wood decomposition in a subtropical forest. For. Ecol. Manage. 493, 119263. https://doi.org/10.1016/j.foreco.2021.119263 (2021).

    Article 

    Google Scholar 

  • 7.

    Jacobsen, R. M., Kauserud, H., Sverdrup-Thygeson, A., Bjorbækmo, M. M. & Birkemoe, T. Wood-inhabiting insects can function as targeted vectors for decomposer fungi. Fungal Ecol. 29, 76–84. https://doi.org/10.1016/j.funeco.2017.06.006 (2017).

    Article 

    Google Scholar 

  • 8.

    Leach, J. G., Orr, L. W. & Christensen, C. Further studies on the interrelationship of insects and fungi in the deterioration of felled Norway pine logs. J. Agric. Res. 55, 129–140 (1937).

    Google Scholar 

  • 9.

    Skelton, J. et al. Fungal symbionts of bark and ambrosia beetles can suppress decomposition of pine sapwood by competing with wood-decay fungi. Fungal Ecol. 45, 100926. https://doi.org/10.1016/j.funeco.2020.100926 (2020).

    Article 

    Google Scholar 

  • 10.

    Wikars, L.-O. Dependence on fire in wood-living insects: An experiment with burned and unburned spruce and birch logs. J. Insect Conserv. 6, 1–12. https://doi.org/10.1023/a:1015734630309 (2002).

    Article 

    Google Scholar 

  • 11.

    Holden, S. R., Gutierrez, A. & Treseder, K. K. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16, 34–46. https://doi.org/10.1007/s10021-012-9594-3 (2013).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Ulyshen, M. D., Lucky, A. & Work, T. T. Effects of prescribed fire and social insects on saproxylic beetles in a subtropical forest. Sci. Rep. 10, 9630. https://doi.org/10.1038/s41598-020-66752-w (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 13.

    Ulyshen, M. D., Horn, S., Barnes, B. & Gandhi, K. J. K. Impacts of prescribed fire on saproxylic beetles in loblolly pine logs. Insect Conserv. Divers. 3, 247–251 (2010).

    Article 

    Google Scholar 

  • 14.

    Billings, R. F. et al. Bark beetle outbreaks and fire: A devastating combination for Central America’s pine forests. Unasylva 55, 7 (2004).

    Google Scholar 

  • 15.

    Ulyshen, M. D., Wagner, T. L. & Mulrooney, J. E. Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere 5, article 47 (2014).

  • 16.

    Van Lear, D. H., Carroll, W. D., Kapeluck, P. R. & Johnson, R. History and restoration of the longleaf pine-grassland ecosystem: Implications for species at risk. For. Ecol. Manag. 211, 150–165 (2005).

    Article 

    Google Scholar 

  • 17.

    Noss, R. F. & Scott, J. M. Endangered Ecosystems of the United States: A Preliminary Assessment of Loss and Degradation. Vol. 28. (US Department of the Interior, National Biological Service, 1995).

  • 18.

    Folkerts, G. W., Deyrup, M. A. & Sisson, D. C. Arthropods associated with xeric longleaf pine habitats in the southeastern United States: A brief overview. Proc. Tall Timbers Fire Ecol. Conf. 18, 159–191 (1993).

    Google Scholar 

  • 19.

    Guyette, R. P., Stambaugh, M. C., Dey, D. C. & Muzika, R.-M. Predicting fire frequency with chemistry and climate. Ecosystems 15, 322–335. https://doi.org/10.1007/s10021-011-9512-0 (2012).

    Article 

    Google Scholar 

  • 20.

    Ulyshen, M. D., Horn, S., Pokswinski, S., McHugh, J. V. & Hiers, J. K. A comparison of coarse woody debris volume and variety between old-growth and secondary longleaf pine forests in the southeastern United States. For. Ecol. Manag. 429, 124–132. https://doi.org/10.1016/j.foreco.2018.07.017 (2018).

    Article 

    Google Scholar 

  • 21.

    Hanula, J. L., Ulyshen, M. D. & Wade, D. D. Impacts of prescribed fire frequency on coarse woody debris volume, decomposition and termite activity in the longleaf pine flatwoods of Florida. Forests 3, 317–331 (2012).

    Article 

    Google Scholar 

  • 22.

    Goebel, P. C. et al. Forest Ecosystems of a Lower Gulf Coastal Plain Landscape: Multifactor Classification and Analysis. 47–75. (2001).

  • 23.

    Ulyshen, M. D., Müller, J. & Seibold, S. Bark coverage and insects influence wood decomposition: Direct and indirect effects. Appl. Soil. Ecol. 105, 25–30. https://doi.org/10.1016/j.apsoil.2016.03.017 (2016).

    Article 

    Google Scholar 

  • 24.

    Kirkman, L. K. et al. Productivity and species richness in longleaf pine woodlands: Resource-disturbance influences across an edaphic gradient. Ecology 97, 2259–2271. https://doi.org/10.1002/ecy.1456 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 25.

    Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013).

    Article 

    Google Scholar 

  • 26.

    R Core Team. R: A Language and Environment for Statistical Computing (Version 3.6.1). http://www.R-project.org. (R Foundation for Statistical Computing, 2019).

  • 27.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 28.

    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).

    Google Scholar 

  • 29.

    Graves, S., Piepho, H.-P. & Selzer, L. multcompView: Visualizations of paired comparisons. R Package Version 0.1-7. (2015).

  • 30.

    Ulyshen, M. D. Interacting effects of insects and flooding on wood decomposition. PLoS ONE 9, e101867 (2014).

  • 31.

    Stoklosa, A. M. et al. Effects of mesh bag enclosure and termites on fine woody debris decomposition in a subtropical forest. Basic Appl. Ecol. 17, 463–470. https://doi.org/10.1016/j.baae.2016.03.001 (2016).

    Article 

    Google Scholar 

  • 32.

    Kampichler, C. & Bruckner, A. The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biol. Rev. 84, 375–389 (2009).

    Article 

    Google Scholar 

  • 33.

    Mackensen, J., Bauhus, J. & Webber, E. Decomposition rates of coarse woody debris—A review with particular emphasis on Australian tree species. Aust. J. Bot. 51, 27–37 (2003).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    New visions for better transportation

    The power of economics to explain and shape the world