in

The influence of rainfall and tillage on wheat yield parameters and weed population in monoculture versus rotation systems

  • 1.

    Navarra, A. & Tubiana, L. (eds) Regional Assessment of Climate Change in the Mediterranean, Advances in Global Change Research (Springer Netherlands, 2013). https://doi.org/10.1007/978-94-007-5772-1.

    Book 

    Google Scholar 

  • 2.

    Solomon, S. S. IPCC (2007): Climate Change the Physical Science Basis. AGUFM 2007, U43D-01 (2007).

  • 3.

    Seneviratne, S. et al. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment: An Overview of the IPCC SREX report, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC) (2012).

  • 4.

    Bates, B., Kundzewicz, Z. & Wu, S. Climate Change and Water. Intergovernmental Panel on Climate Change Secretariat (2008).

  • 5.

    Neve, P., Vila-Aiub, M. & Phytologist, F.R.-N. Evolutionary-thinking in agricultural weed management. New Phytol. 184(4), 783–793 (2009).

    Article 

    Google Scholar 

  • 6.

    Harrison, M. T., Cullen, B. R. & Rawnsley, R. P. Modelling the sensitivity of agricultural systems to climate change and extreme climatic events. Agric. Syst. https://doi.org/10.1016/j.agsy.2016.07.006 (2016).

    Article 

    Google Scholar 

  • 7.

    Moret, D., Arrúe, J. L., López, M. V. & Gracia, R. Winter barley performance under different cropping and tillage systems in semiarid Aragon (NE Spain). Eur. J. Agron. 26, 54–63. https://doi.org/10.1016/j.eja.2006.08.007 (2007).

    Article 

    Google Scholar 

  • 8.

    FAO (Food and Agriculture Organization). Rome: Introduction to Conservation Agriculture (Its Principles and Benefits). http://teca.fao.org/technology/introduction-conservationagriculture-its-principles-benefits (2013).

  • 9.

    Kertész, À. & Madarász, B. Conservation agriculture in Europe. Int. Soil Water Conserv. Res. 2(1), 91–96 (2014).

    Article 

    Google Scholar 

  • 10.

    Álvaro-Fuentes, J., López, M. V., Cantero-Martínez, C. & Arrúe, J. L. Tillage effects on soil organic carbon fractions in Mediterranean dryland agroecosystems. Soil Sci. Soc. Am. J. 72, 541–547 (2008).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Bouchery, Y., Ghaffari, A., Jemai, Z. & Dallery, Y. Including sustainability criteria into inventory models. Eur. J. Oper. Res. 222, 229–240 (2012).

    MathSciNet 
    Article 

    Google Scholar 

  • 12.

    Soane, B. D. et al. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 118, 66–87 (2012).

    Article 

    Google Scholar 

  • 13.

    Madejón, E. et al. Effect of long-term conservation tillage on soil biochemical properties in Mediterranean Spanish areas. Soil Tillage Res. 105, 55–62 (2009).

    Article 

    Google Scholar 

  • 14.

    De Vita, P., Di Paolo, E., Fecondo, G., Di Fonzo, N. & Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 92, 69–78. https://doi.org/10.1016/j.still.2006.01.012 (2007).

    Article 

    Google Scholar 

  • 15.

    Giambalvo, D. et al. Faba bean grain yield, N2 fixation, and weed infestation in a long-term tillage experiment under rainfed Mediterranean conditions. Plant Soil 360, 215–227. https://doi.org/10.1007/s11104-012-1224-5 (2012).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Ruisi, P. et al. Conservation tillage in a semiarid Mediterranean environment: Results of 20 years of research. Ital. J. Agron. 9(560), 1–7. https://doi.org/10.4081/ija.2014.560 (2014).

    Article 

    Google Scholar 

  • 17.

    Plaza-Bonilla, D., Cantero-Martínez, C., Viñas, P. & Álvaro-Fuentes, J. Soil aggregation and organic carbon protection in a no-tillage chronosequence under Mediterranean conditions. Geoderma 193–194, 76–82 (2013).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Barberi, P. & Lo Cascio, B. Long-term tillage and crop rotation effects on weed seed bank size and composition. Weed Res. 41(4), 325–340. https://doi.org/10.1046/j.1365-3180.2001.00241.x (2001).

    Article 

    Google Scholar 

  • 19.

    Batey, T. & McKenzie, D. C. Soil compaction: Identification directly in the field. Soil Use Manag. 22, 123–131. https://doi.org/10.1111/j.1475-2743.2006.00017.x (2006).

    Article 

    Google Scholar 

  • 20.

    Lampurlanés, J., Plaza-Bonilla, D., Álvaro-Fuentes, J. & Cantero-Martínez, C. Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. Field Crops Res. 198, 59–67. https://doi.org/10.1016/j.fcr.2016.02.010 (2016).

    Article 

    Google Scholar 

  • 21.

    Ruisi, P. et al. Weed seedbank size and composition in a long-term tillage and crop sequence experiment. Weed Res. 55, 320–328. https://doi.org/10.1111/wre.12142 (2015).

    Article 

    Google Scholar 

  • 22.

    Mahli, S. S. & Lemke, R. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gasemissions in a second 4-yr rotation cycle. Soil Tillage Res. 96, 269–283. https://doi.org/10.1016/j.still.2007.06.011 (2007).

    Article 

    Google Scholar 

  • 23.

    Santín-Montanyá, M. I., Gandía, M. L., Zambrana, E. & Tenorio, J. L. Effects of tillage systems on wheat and weed water relationships over time when growing together, in semiarid conditions. Ann. Appl. Biol. 177, 256–265. https://doi.org/10.1111/aab.12620 (2020).

    Article 

    Google Scholar 

  • 24.

    Chaghazardi, H. R., Jahansouz, M. R., Ahmadi, A. & Gorji, M. Effects of tillage management on productivity of wheat and chickpea under cold, rainfed conditions in western Iran. Soil Tillage Res. 162, 26–33. https://doi.org/10.1016/j.still.2016.04.010 (2016).

    Article 

    Google Scholar 

  • 25.

    López-Bellido, L., Fuentes, M., Castillo, J. E., López-Garrido, F. J. & Fernández, E. J. Long-term tillage, crop rotation, and nitrogen fertiliser effects on wheat yield under rainfed Mediterranean conditions. Agron. J. 88, 783–791 (1996).

    Article 

    Google Scholar 

  • 26.

    Cantero-Martínez, C., Angás, P. & Lampurlanés, J. Long-term yield and water use efficiency under various tillage systems in Mediterranean rainfed conditions. Ann. Appl. Biol. 150, 293–305. https://doi.org/10.1111/j.1744-7348.2007.00142.x (2007).

    Article 

    Google Scholar 

  • 27.

    Campiglia, E., Mancinelli, R., De Stefanis, E., Pucciarmati, S. & Radicetti, E. The long-term effects of conventional and organic ropping systems, tillage managements and weather conditions on yield and grain quality of durum wheat (Triticum durum Desf.) in the Mediterranean environment of central Italy. Field Crops Res. 176, 34–44. https://doi.org/10.1016/j.fcr.2015.02.021 (2015).

    Article 

    Google Scholar 

  • 28.

    Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S. & Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biol. Rev. 87, 52–71 (2012).

    Article 

    Google Scholar 

  • 29.

    Plourde, J. D., Pijanowski, B. C. & Pekin, B. K. Evidence for increased monoculture cropping in the Central United States. Agric. Ecosyst. Environ. 165, 50–59 (2013).

    Article 

    Google Scholar 

  • 30.

    Seymour, M., Kirkegaard, J. A., Peoples, M. B., White, P. F. & French, R. J. Break-crop benefits to wheat in Western Australia—Insights from over three decades of research. Crop Pasture Sci. 63, 1 (2012).

    Article 

    Google Scholar 

  • 31.

    Wang, H. & Ortiz-Bobea, A. Market-driven corn monocropping in the U.S. Midwest. Agric. Resour. Econ. Rev. 48, 274–296 (2019).

    Article 

    Google Scholar 

  • 32.

    Tekin, S., Yazar, A. & Barut, H. Comparison of wheat-based rotation systems vs monocropping under dryland Mediterranean conditions. Int. J. Agric. Biol. Eng. 10, 203–213. https://doi.org/10.25165/j.ijabe.20171005.3443 (2017).

    Article 

    Google Scholar 

  • 33.

    Ryan, J., Singh, M. & Pala, M. Long-term cereal-based rotation trials in the Mediterranean region: Implications for cropping sustainability. Adv. Agron. 97, 273–319. https://doi.org/10.1016/S0065-2113(07)00007-7 (2008).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).

    Article 

    Google Scholar 

  • 35.

    Marini, L. et al. Crop rotations sustain cereal yields under a changing climate. Environ. Res. Lett. 15(12), 124011 (2020).

    Article 

    Google Scholar 

  • 36.

    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Amato, G. et al. Long-term tillage and crop sequence effects on wheat grain yield and quality. Agron. J. 105, 1317–1327 (2013).

    Article 

    Google Scholar 

  • 38.

    Loke, P. F., Kotzé, E. & Du Preez, C. C. Impact of long-term wheat production management practices on soil acidity, phosphorus and some micronutrients in a semi-arid Plinthosol. Soil Res. 51, 415–426. https://doi.org/10.1071/SR12359 (2013).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Martin-Rueda, I. et al. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil Tillage Res. 92, 1–9 (2007).

    Article 

    Google Scholar 

  • 40.

    Hadjichristodoulou, A. The relationship of grain yield with harvest index and total biological yield of barley in drylands. Tech. Bull. 126, 1–10 (1991).

    Google Scholar 

  • 41.

    Zimdahl, R. L. Weed-Crop Competition: A Review 49–50, 109–145 (Blackwell Publishing, 2004).

  • 42.

    Nkoa, R., Owen, M. D. K. & Swanton, C. J. Weed abundance, distribution, diversity, and community analyses. Weed Sci. 63, 64–90. https://doi.org/10.1614/ws-d-13-00075.1 (2015).

    Article 

    Google Scholar 

  • 43.

    Ter Braak, C. J. F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).

    Article 

    Google Scholar 

  • 44.

    Fried, G., Petit, S. & Reboud, X. A specialist-generalist classification of the arable flora and its response to changes in agricultural practices. BMC Ecol. 10, 20 (2010).

    Article 

    Google Scholar 

  • 45.

    Korres, N. E. et al. Cultivars to face climate change effects on crops and weeds: A review. Agron. Sustain. Dev. 36, 1–22. https://doi.org/10.1007/s13593-016-0350-5 (2016).

    Article 

    Google Scholar 

  • 46.

    Acevedo, E. H., Silva, P. C., Silva, H. R. & Solar, B. R. Wheat production in Mediterranean environments. In Wheat: Ecology and Physiology of Yield Determination 295–331 (1999).

  • 47.

    Ramesh, K., Matloob, A., Aslam, F., Florentine, S. K. & Chauhan, B. S. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Front. Plant Sci. 8, 1–12. https://doi.org/10.3389/fpls.2017.00095 (2017).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Calzarano, F. et al. Durum wheat quality, yield and sanitary status under conservation agriculture. Agriculture https://doi.org/10.3390/agriculture8090140 (2018).

    Article 

    Google Scholar 

  • 49.

    Santín-Montanyá, M. I., Fernández-Getino, A. P., Zambrana, E. & Tenorio, J. L. Effects of tillage on winter wheat production in Mediterranean dryland fields. Arid Land Res. Manag. 31(3), 269–282. https://doi.org/10.1080/15324982.2017.1307289 (2017).

    Article 

    Google Scholar 

  • 50.

    Shimshi, D., Bielorai, H. & Mantell, A. Irrigation of field crops. In Arid Zone Irrigation 369–381 (Springer, 1973).

  • 51.

    Schultz, J. E. Crop production in a rotation trial at Tarlee, South Australia. Aust. J. Exp. Agric. 35, 865–876. https://doi.org/10.1071/EA9950865 (1995).

    Article 

    Google Scholar 

  • 52.

    Alarcón, R. et al. Effects of no-tillage and non-inversion tillage on weed community diversity and crop yield over nine years in a Mediterranean cereal-legume cropland. Soil Tillage Res. 179, 54–62. https://doi.org/10.1016/j.still.2018.01.014 (2018).

    Article 

    Google Scholar 

  • 53.

    Šíp, V., Vavera, R., Chrpová, J., Kusá, H. & Růžek, P. Winter wheat yield and quality related to tillage practice, input level and environmental conditions. Soil Tillage Res. 132, 77–85. https://doi.org/10.1016/j.still.2013.05.002 (2013).

    Article 

    Google Scholar 

  • 54.

    Woźniak, A. Effect of cereal monoculture and tillage systems on grain yield and weed infestation of winter durum wheat. Int. J. Plant Prod. 14, 1–8. https://doi.org/10.1007/s42106-019-00062-8 (2020).

    Article 

    Google Scholar 

  • 55.

    Schulte, B. J., Tomasek, B. J., Davis, A. S., Andersson, L. & Benoit, D. L. An investigation to enhance understanding of the stimulation of weed seedling emergence by soil disturbance. Weed Res. 54, 1–12. https://doi.org/10.1111/wre.12054 (2014).

    Article 

    Google Scholar 

  • 56.

    Calado, J. M. G., Basch, G. & de Carvalho, M. Weed emergence as influenced by soil moisture and air temperature. J. Pest Sci. 82, 81–88. https://doi.org/10.1007/s10340-008-0225-x (2009).

    Article 

    Google Scholar 

  • 57.

    Siddique, K. H. M. et al. Innovations in agronomy for food legumes. A review. Agron. Sustain. Dev. 32, 45–64 (2012).

    Article 

    Google Scholar 

  • 58.

    Payne, W. A., Rasmussen, P. E., Chen, C. & Ramig, R. E. Assessing simple wheat and pea models using data from a long-term tillage experiment. Agron. J. 93, 250–260. https://doi.org/10.2134/agronj2001.931250x (2001).

    Article 

    Google Scholar 

  • 59.

    Machado, S., Petrie, S., Rhinhart, K. & Ramig, R. E. Tillage effects on water use and grain yield of winter wheat and green pea in rotation. Agron. J. 100, 154–162. https://doi.org/10.2134/agrojnl2006.0218 (2008).

    Article 

    Google Scholar 

  • 60.

    Copec, K., Filipovic, D., Husnjak, S., Kovacev, I. & Kosustic, S. Effects of tillage systems on soil water content and yield in maize and winter wheat production. Plant Soil Environ. 61(5), 213–219. https://doi.org/10.17221/156/2015-pse (2015).

    Article 

    Google Scholar 

  • 61.

    López-Bellido, L., López-Bellido, R. J., Redondo, R. & Benítez, J. Faba bean nitrogen fixation in a wheat-based rotation under rainfed Mediterranean conditions: Effect of tillage system. Field Crop Res. 98, 253–260 (2006).

    Article 

    Google Scholar 

  • 62.

    López-Bellido, R. J., López-Bellido, L., Benítez-Vega, J. & López-Bellido, F. J. Tillage system, preceding crop, and nitrogen fertilizer in wheat crop: I. Soil water content. Agron. J. 99, 59–65. https://doi.org/10.2134/agronj2006.0025 (2007).

    Article 

    Google Scholar 

  • 63.

    López-Bellido, L., Muñoz-Romero, V., Fernández-García, P. & López-Bellido, R. J. Ammonium accumulation in soil: The long-term effects of tillage, rotation and N rate in a Mediterranean vertisol. Soil Use Manag. 30(4), 471–479 (2014).

    Article 

    Google Scholar 

  • 64.

    Bilalis, D., Efthimiadis, P. & Sidiras, N. Effect of three tillage systems on weed flora in a 3-year rotation with four crops. J. Agron. Crop Sci. 186, 135–141. https://doi.org/10.1046/j.1439-037X.2001.00458.x (2001).

    Article 

    Google Scholar 

  • 65.

    Feledyn-Szewczyk, B., Smagacz, J., Kwiatkowski, C. A., Harasim, E. & Woźniak, A. Weed flora and soil seed bank composition as affected by tillage system in three-year crop rotation. Agriculture https://doi.org/10.3390/agriculture10050186 (2020).

    Article 

    Google Scholar 

  • 66.

    Pala, M., Ryan, J., Zhang, H., Singh, M. & Harris, H. C. Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agric. Water Manag. 93, 136–144. https://doi.org/10.1016/j.agwat.2007.07.001 (2007).

    Article 

    Google Scholar 

  • 67.

    Légère, A., Stevenson, F. C. & Benoit, D. L. Diversity and assembly of weed communities: Contrasting responses across cropping systems. Weed Res. 45, 303–315. https://doi.org/10.1111/j.1365-3180.2005.00459.x (2005).

    Article 

    Google Scholar 

  • 68.

    Sans, F. X., Berner, A., Armengot, L. & Mäder, P. Tillage effects on weed communities in an organic winter wheat-sunflower-spelt cropping sequence. Weed Res. 51, 413–421. https://doi.org/10.1111/j.1365-3180.2011.00859.x (2011).

    Article 

    Google Scholar 

  • 69.

    Sarani, M., Oveisi, M., Mashhadi, H. R., Alizade, H. & Gonzalez-Andujar, J. L. Interactions between the tillage system and crop rotation on the crop yield and weed populations under arid conditions. Weed Biol. Manag. 14, 198–208. https://doi.org/10.1111/wbm.12047 (2014).

    Article 

    Google Scholar 

  • 70.

    Pardo, G. et al. Effects of reduced and conventional tillage on weed communities: Results of a long-term experiment in Southwestern Spain. Planta Daninha https://doi.org/10.1590/s0100-83582019370100152 (2019).

    Article 

    Google Scholar 

  • 71.

    Fennimore, S. A. & Jackson, L. E. Organic amendment and tillage effects on vegetable field weed emergence and seedbanks 1. Weed Technol. 17, 42–50. https://doi.org/10.1614/0890-037x(2003)017[0042:oaateo]2.0.co;2 (2003).

    Article 

    Google Scholar 

  • 72.

    Francis, A. & Warwick, S. I. The biology of Canadian weeds. 3. Lepidium draba L., L. chalepense L., L. appelianum Al-Shehbaz (updated). Can. J. Plant Sci. 88, 379–401. https://doi.org/10.4141/CJPS07100 (2008).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Decreased resting and nursing in short-finned pilot whales when exposed to louder petrol engine noise of a hybrid whale-watch vessel

    MIT makes strides on climate action plan