Brown, C. R. The ecology and evolution of colony-size variation. Behav. Ecol. Sociobiol. 70, 1613–1632 (2016).
Google Scholar
Brown, C. R., Stutchbury, B. J. & Walsh, P. D. Choice of colony size in birds. Trends Ecol. Evol. 5, 398–403 (1990).
Google Scholar
Wittenberger, J. F. & Hunt, G. L. The adaptive significance of coloniality in birds. Avian Biol. 8, 1–78 (1985).
Ainley, D. G., Nur, N. & Woehler, E. J. Factors affecting the distribution and size of Pygoscelid penguin colonies in the Antarctic. Auk 112, 171–182 (1995).
Google Scholar
Forero, M. G., Tella, J. L., Hobson, K. A., Bertellotti, M. & Blanco, G. Conspecific food competition explains variability in colony size: A test in Magellanic Penguins. Ecology 83, 3466–3475 (2002).
Google Scholar
Hunt, G. L., Eppley, Z. A. & Schneider, D. C. Reproductive performance of seabirds: The importance of population and colony size. Auk 103, 306–317 (1986).
Google Scholar
Brunton, D. ‘Optimal’ colony size for least terns: An inter-colony study of opposing selective pressures by predators. Condor 101, 607–615 (1999).
Google Scholar
Lyver, P. O. et al. Trends in the breeding population of Adélie penguins in the Ross Sea, 1981–2012: A coincidence of climate and resource extraction effects. PLoS ONE 9, e91188 (2014).
Google Scholar
Croxall, J. P. et al. Seabird conservation status, threats and priority actions: A global assessment. Bird Conserv. Int. 22, 1–34 (2012).
Google Scholar
Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. Population trend of the world’s monitored seabirds, 1950–2010. PLoS ONE 10, e0129342 (2015).
Google Scholar
Hinke, J., Polito, M., Reiss, C., Trivelpiece, S. & Trivelpiece, W. Flexible reproductive timing can buffer reproductive success of Pygoscelis spp. penguins in the Antarctic Peninsula region. Mar. Ecol. Prog. Ser. 454, 91–104 (2012).
Google Scholar
Elliott, M. L. et al. Brandt’s cormorant diet (1994–2012) indicates the importance of fall ocean conditions for northern anchovy in central California. Fish. Oceanogr. 25, 515–528 (2016).
Google Scholar
Cairns, D. K. Population regulation of seabird colonies. In Current Ornithology (ed. Power, D. M.) 37–61 (Springer US, 1992).
Google Scholar
Aebischer, N. J., Coulson, J. C. & Colebrook, J. M. Parallel long-term trends across four marine trophic levels and weather. Nature 347, 753–755 (1990).
Google Scholar
Saether, B. E. & Bakke, O. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).
Google Scholar
Jenouvrier, S., Barbraud, C., Cazelles, B. & Weimerskirch, H. Modelling population dynamics of seabirds: Importance of the effects of climate fluctuations on breeding proportions. Oikos 108, 511–522 (2005).
Google Scholar
Schmidt, A. E. et al. Changing environmental spectra influence age-structured populations: Increasing ENSO frequency could diminish variance and extinction risk in long-lived seabirds. Theor. Ecol. 11, 367–377 (2018).
Google Scholar
Kokko, H., Harris, M. P. & Wanless, S. Competition for breeding sites and site-dependent, population regulation in a highly colonial seabird, the common guillemot Uria aalge. J. Anim. Ecol. 73, 367–376 (2004).
Google Scholar
Oro, D. Living in a ghetto within a local population: An empirical example of an ideal despotic distribution. Ecology 89, 838–846 (2008).
Google Scholar
Stokes, D. L. & Boersma, P. D. Nest-site characteristics and reproductive success in Magellanic Penguins (Spheniscus magellanicus). Auk 115, 34–49 (1998).
Google Scholar
Velando, A. & Freire, J. Nest site characteristics, occupation, and breeding success in the European Shag. Waterbirds 26, 473 (2003).
Google Scholar
Coulson, J. C. Colonial breeding in seabirds. In Biology of Marine Birds (eds Schreiber, E. A. & Burger, J.) 87–113 (CRC Press, 2002).
Liljesthröm, M., Emslie, S. D., Frierson, D. & Schiavini, A. Avian predation at a Southern Rockhopper Penguin colony on Staten Island, Argentina. Polar Biol. 31, 465–474 (2007).
Google Scholar
Frere, E., Gandini, P. & Boersma, P. D. Effects of nest type on reproductive success of the Magellanic penguin Spenishcus magellanicus. Mar. Ornithol. 20, 1–6 (1992).
Emslie, S. D., Karnovsky, N. & Trivelpiece, W. Avian predation at penguin colonies on King George Island, Antarctica. Wilson Bull. 107, 317–327 (1995).
Gaston, A. J. & Elliot, R. D. Predation by Ravens Corvus corax on Brunnich’s Guillemot Uria lomvia eggs and chicks and its possible impact on breeding site selection. Ibis 138, 742–748 (1996).
Google Scholar
Taylor, R. H. The Adélie penguin Pygoscelis adeliae at Cape Royds. Ibis 104, 176–204 (1962).
Google Scholar
Votier, S. C., Heubeck, M. & Furness, R. W. Using inter-colony variation in demographic parameters to assess the impact of skua predation on seabird populations. Ibis 150, 45–53 (2008).
Google Scholar
Hamilton, W. D. Geometry for the selfish herd. J. Theor. Biol. 31, 295–311 (1971).
Google Scholar
Weidinger, K. Effect of predation by skuas on breeding success of the Cape petrel Daption capense at Nelson Island, Antarctica. Polar Biol. 20, 170–177 (1998).
Google Scholar
Lynch, H. J. & LaRue, M. A. First global census of the Adélie Penguin. Auk 131, 457–466 (2014).
Google Scholar
Ainley, D. The Adélie Penguin: Bellwether of Climate Change (Columbia University Press, 2002).
Google Scholar
Borowicz, A. et al. Multi-modal survey of Adélie penguin mega-colonies reveals the Danger Islands as a seabird hotspot. Sci. Rep. 8, 3926 (2018).
Google Scholar
Bracegirdle, T. J., Connolley, W. M. & Turner, J. Antarctic climate change over the twenty first century. J. Geophys. Res. 113, D03103 (2008).
Google Scholar
Smith, W. O., Ainley, D. G., Arrigo, K. R. & Dinniman, M. S. The oceanography and ecology of the Ross Sea. Ann. Rev. Mar. Sci. 6, 469–487 (2014).
Google Scholar
Ainley, D. et al. Antarctic penguin response to habitat change as Earth’s troposphere reaches 2 C above pre industrial levels. Ecol. Monogr. 80, 49–66 (2010).
Google Scholar
Cimino, M. A., Lynch, H. J., Saba, V. S. & Oliver, M. J. Projected asymmetric response of Adélie penguins to Antarctic climate change. Sci. Rep. 6, 28785 (2016).
Google Scholar
Fraser, W. R., Patterson-Fraser, D. L., Ribic, C. A., Schofield, O. & Ducklow, H. A nonmarine source of variability in Adélie penguin demography. Oceanography 26, 207–209 (2013).
Google Scholar
Cimino, M. A., Patterson-Fraser, D. L., Stammerjohn, S. & Fraser, W. R. The interaction between island geomorphology and environmental parameters drives Adélie penguin breeding phenology on neighboring islands near Palmer Station, Antarctica. Ecol. Evol. 9, 9334–9349 (2019).
Google Scholar
Patterson, D. L., Easter-Pilcher, A. L. & Fraser, W. R. The effects of human activity and environmental variability on long-term changes in Adélie penguin populations at Palmer Station, Antarctica. In Antarctic Biology in a Global Context (eds. van der Vies, S. M. et al.) 301–307 (2003).
Bricher, P. K., Lucieer, A. & Woehler, E. J. Population trends of Adélie penguin (Pygoscelis adeliae) breeding colonies: A spatial analysis of the effects of snow accumulation and human activities. Polar Biol. 31, 1397–1407 (2008).
Google Scholar
Ainley, D. G., LeResche, R. E. & Sladen, W. J. L. Breeding Biology of the Adélie Penguin (1983).
Stonehouse, B. Observations on Adélie penguins (Pygoscelis adeliae) at Cape Royds, Antarctica. In Proc. XIIIth Internatl. Ornith. Congr. Vol. 1963, 766–779 (1963).
Ainley, D. G. et al. Diet and foraging effort of Adélie penguins in relation to pack-ice conditions in the southern Ross Sea. Polar Biol. 20, 311–319 (1998).
Google Scholar
Ballard, G., Ainley, D. G., Ribic, C. A. & Barton, K. R. Effect of instrument attachment and other factors on foraging trip duration and nesting success of Adélie penguins. Condor 103, 481–490 (2001).
Google Scholar
Ainley, D. G. et al. Post-fledging survival of Adélie penguins at multiple colonies: Chicks raised on fish do well. Mar. Ecol. Prog. Ser. 601, 239–251 (2018).
Google Scholar
Dugger, K. M., Ballard, G., Ainley, D. G., Lyver, P. O. & Schine, C. Adélie penguins coping with environmental change: Results from a natural experiment at the edge of their breeding range. Front. Ecol. Evol. 2, 1–12 (2014).
Google Scholar
Ainley, D. G. et al. Decadal-scale changes in the climate and biota of the Pacific sector of the Southern Ocean, 1950s to the 1990s. Antarct. Sci. 17, 171–182 (2005).
Google Scholar
Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).
Google Scholar
LaRue, M. A. et al. Climate change winners: Receding ice fields facilitate colony expansion and altered dynamics in an Adélie penguin metapopulation. PLoS ONE 8, e60568 (2013).
Google Scholar
Emslie, S. D., Berkman, P. A., Ainley, D. G., Coats, L. & Polito, M. Late-Holocene initiation of ice-free ecosystems in the southern Ross Sea, Antarctica. Mar. Ecol. Prog. Ser. 262, 19–25 (2003).
Google Scholar
Emslie, S. D., Coats, L. & Licht, K. A 45,000 yr record of Adélie penguins and climate change in the Ross Sea, Antarctica. Geology 35, 61–64 (2007).
Google Scholar
Penney, R. L. Territorial and social behavior in the Adélie Penguin. Antarct. Bird Stud. 12, 83–131 (1968).
LaRue, M. A. et al. A method for estimating colony sizes of Adélie penguins using remote sensing imagery. Polar Biol. 37, 507–517 (2014).
Google Scholar
De Neve, L., Fargallo, J. A., Polo, V., Martin, J. & Soler, M. Subcolony characteristics and breeding performance in the Chinstrap Penguin Pygoscelis antarctica. Ardeola 53, 19–29 (2006).
Winstral, A., Elder, K. & Davis, R. E. Spatial snow modeling of wind-redistributed snow using terrain-based parameters. J. Hdyrometeorol. 3, 524–538 (2002).
Google Scholar
Plattner, C. H., Braun, L. N. & Brenning, A. Spatial variability of snow accumulation on Vernagtferner, Austrian Alps, in winter 2003/04. Z. Gletscherkd. Glazialgeol. 39, 43–57 (2006).
Young, E. Skua and Penguin: Predator and Prey (Cambridge University Press, 1994).
Google Scholar
Trillmich, F. Feeding Territories and breeding success of South Polar Skuas. Auk 95, 23–33 (1978).
Google Scholar
Moret, G. J. M. & Huerta, A. D. Correcting GIS-based slope aspect calculations for the Polar Regions. Antarct. Sci. 19, 129–130 (2007).
Google Scholar
Seefeldt, M. W., Tripoli, G. J. & Stearns, C. R. A high-resolution numerical simulation of the wind flow in the Ross Island region, Antarctica. Mon. Weather Rev. 131, 435–458 (2003).
Google Scholar
Jammalamadaka, S. R., Rao Jammalamadaka, S. & SenGupta, A. Topics in circular statistics. Ser. Multivariate Anal. https://doi.org/10.1142/4031 (2001).
Google Scholar
Watson, G. S. Goodness-of-fit tests on a circle. II.. Biometrika 49, 57–63 (1962).
Google Scholar
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (CRC Press, 2017).
Google Scholar
Marra, G. & Wood, S. N. Practical variable selection for generalized additive models. Comput. Stat. Data Anal. 55, 2372–2387 (2011).
Google Scholar
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel inference: A Practical Information-Theoretic Approach Vol. 2 (Springer Science, 2002).
Google Scholar
Ferrer, M., Belliure, J., Minguez, E., Casado, E. & Bildstein, K. Heat loss and site-dependent fecundity in chinstrap penguins (Pygoscelis antarctica). Polar Biol. 37, 1031–1039 (2014).
Google Scholar
Tenaza, R. Behavior and nesting success relative to nest location in Adélie Penguins (Pygoscelis adeliae). Condor 73, 81–92 (1971).
Google Scholar
Wilson, D. J. et al. South Polar Skua breeding populations in the Ross Sea assessed from demonstrated relationship with Adélie Penguin numbers. Polar Biol. 40, 577–592 (2017).
Google Scholar
Ballard, G. et al. Responding to climate change: Adélie Penguins confront astronomical and ocean boundaries. Ecology 91, 2056–2069 (2010).
Google Scholar
Shepherd, L. D. et al. Microevolution and mega-icebergs in the Antarctic. Proc. Natl. Acad. Sci. USA. 102, 16717–16722 (2005).
Google Scholar
Dugger, K. M., Ainley, D. G., Lyver, P. O., Barton, K. & Ballard, G. Survival differences and the effect of environmental instability on breeding dispersal in an Adélie penguin meta-population. Proc. Natl. Acad. Sci. USA. 107, 12375–12380 (2010).
Google Scholar
Ballance, L. T., Ainley, D. G., Ballard, G. & Barton, K. An energetic correlate between colony size and foraging effort in seabirds, an example of the Adélie penguin Pygoscelis adeliae. J. Avian Biol. 40, 279–288 (2009).
Google Scholar
Jackson, A. L., Bearhop, S. & Thompson, D. R. Shape can influence the rate of colony fragmentation in ground nesting seabirds. Oikos 111, 473–478 (2005).
Google Scholar
McDowall, P. S. & Lynch, H. J. When the ‘selfish herd’ becomes the ‘frozen herd’: Spatial dynamics and population persistence in a colonial seabird. Ecology 100, e02823 (2019).
Google Scholar
Gilchrist, H. G. Declining thick-billed murre Uria lomvia colonies experience higher gull predation rates: An inter-colony comparison. Biol. Conserv. 87, 21–29 (1999).
Google Scholar
Danchin, E., Boulinier, T. & Massot, M. Conspecific reproductive success and breeding habitat selection: Implications for the study of coloniality. Ecology 79, 2415–2428 (1998).
Google Scholar
Valone, T. J. & Templeton, J. J. Public information for the assessment of quality: A widespread social phenomenon. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 357, 1549–1557 (2002).
Google Scholar
Source: Ecology - nature.com